13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Body Protein Sparing in Hibernators: A Source for Biomedical Innovation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.

          Related collections

          Most cited references360

          • Record: found
          • Abstract: found
          • Article: not found

          The calpain system.

          The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pandemic of physical inactivity: global action for public health.

            Physical inactivity is the fourth leading cause of death worldwide. We summarise present global efforts to counteract this problem and point the way forward to address the pandemic of physical inactivity. Although evidence for the benefits of physical activity for health has been available since the 1950s, promotion to improve the health of populations has lagged in relation to the available evidence and has only recently developed an identifiable infrastructure, including efforts in planning, policy, leadership and advocacy, workforce training and development, and monitoring and surveillance. The reasons for this late start are myriad, multifactorial, and complex. This infrastructure should continue to be formed, intersectoral approaches are essential to advance, and advocacy remains a key pillar. Although there is a need to build global capacity based on the present foundations, a systems approach that focuses on populations and the complex interactions among the correlates of physical inactivity, rather than solely a behavioural science approach focusing on individuals, is the way forward to increase physical activity worldwide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr.

              We employed a whole body magnetic resonance imaging protocol to examine the influence of age, gender, body weight, and height on skeletal muscle (SM) mass and distribution in a large and heterogeneous sample of 468 men and women. Men had significantly (P < 0.001) more SM in comparison to women in both absolute terms (33.0 vs. 21.0 kg) and relative to body mass (38.4 vs. 30.6%). The gender differences were greater in the upper (40%) than lower (33%) body (P < 0.01). We observed a reduction in relative SM mass starting in the third decade; however, a noticeable decrease in absolute SM mass was not observed until the end of the fifth decade. This decrease was primarily attributed to a decrease in lower body SM. Weight and height explained approximately 50% of the variance in SM mass in men and women. Although a linear relationship existed between SM and height, the relationship between SM and body weight was curvilinear because the contribution of SM to weight gain decreased with increasing body weight. These findings indicate that men have more SM than women and that these gender differences are greater in the upper body. Independent of gender, aging is associated with a decrease in SM mass that is explained, in large measure, by a decrease in lower body SM occurring after the fifth decade.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                18 February 2021
                2021
                : 12
                : 634953
                Affiliations
                [1] 1University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique , Strasbourg, France
                [2] 2University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department , Strasbourg, France
                [3] 3Centre Scientifique de Monaco , Monaco, Monaco
                [4] 4Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna , Vienna, Austria
                Author notes

                Edited by: Jean-Pierre Montani, Université de Fribourg, Switzerland

                Reviewed by: Toshio Tsubota, Hokkaido University, Japan; Vadim Fedorov, University of Alaska Fairbanks, United States

                *Correspondence: Fabrice Bertile fbertile@ 123456unistra.fr

                This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology

                †These authors have contributed equally to this work

                Article
                10.3389/fphys.2021.634953
                7930392
                33679446
                70f287f8-d91a-4c2d-a7be-fd658e0af89a
                Copyright © 2021 Bertile, Habold, Le Maho and Giroud.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2020
                : 12 January 2021
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 363, Pages: 25, Words: 24765
                Funding
                Funded by: Centre National de la Recherche Scientifique 10.13039/501100004794
                Funded by: Université de Strasbourg 10.13039/501100003768
                Funded by: Centre National d’Etudes Spatiales 10.13039/501100002830
                Funded by: Austrian Science Fund 10.13039/501100002428
                Funded by: Veterinärmedizinische Universität Wien 10.13039/501100009088
                Categories
                Physiology
                Review

                Anatomy & Physiology
                hibernation,fasting,lean mass,metabolic depression,muscles,obesity,biomimicry
                Anatomy & Physiology
                hibernation, fasting, lean mass, metabolic depression, muscles, obesity, biomimicry

                Comments

                Comment on this article