7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer’s Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disease, currently affecting over 5 million Americans with projections expected to rise as the population ages. The hallmark pathologies of AD are Aβ plaques composed of aggregated beta-amyloid (Aβ), and tau tangles composed of hyperphosphorylated, aggregated tau. These pathologies are typically accompanied by an increase in neuroinflammation as an attempt to ameliorate the pathology. This idea has pushed the field toward focusing on mechanisms and the influence neuroinflammation has on disease progression. The vast majority of AD cases are sporadic and therefore, researchers investigate genetic risk factors that could lead to AD. Apolipoprotein E (ApoE) is the largest genetic risk factor for developing AD. ApoE has 3 isoforms-ApoE2, ApoE3, and ApoE4. ApoE4 constitutes an increased risk of AD, with one copy increasing the risk about 4-fold and two copies increasing the risk about 15-fold compared to those with the ApoE3 allele. ApoE4 has been shown to play a role in Aβ deposition, tau tangle formation, neuroinflammation and many subsequent pathways. However, while we know that ApoE4 plays a role in these pathways and virtually all aspects of AD, the exact mechanism of how ApoE4 impacts AD progression is murky at best and therefore the role ApoE4 plays in these pathways needs to be elucidated. This review aims to discuss the current literature regarding the pathways and mechanisms of ApoE4 in AD progression with a focus on its role in neuroinflammation.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.

          The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy

            APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-β pathology. ApoE4 exerts a ‘toxic’ gain of function whereas the absence of ApoE is protective.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia.

              Genetic variants of TREM2, a protein expressed selectively by microglia in the brain, are associated with Alzheimer's disease (AD). Starting from an unbiased protein microarray screen, we identified a set of lipoprotein particles (including LDL) and apolipoproteins (including CLU/APOJ and APOE) as ligands of TREM2. Binding of these ligands by TREM2 was abolished or reduced by disease-associated mutations. Overexpression of wild-type TREM2 was sufficient to enhance uptake of LDL, CLU, and APOE in heterologous cells, whereas TREM2 disease variants were impaired in this activity. Trem2 knockout microglia showed reduced internalization of LDL and CLU. β-amyloid (Aβ) binds to lipoproteins and this complex is efficiently taken up by microglia in a TREM2-dependent fashion. Uptake of Aβ-lipoprotein complexes was reduced in macrophages from human subjects carrying a TREM2 AD variant. These data link three genetic risk factors for AD and reveal a possible mechanism by which mutant TREM2 increases risk of AD. VIDEO ABSTRACT.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                30 April 2020
                2020
                : 11
                : 754
                Affiliations
                Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY, United States
                Author notes

                Edited by: Sally Ann Frautschy, University of California, Los Angeles, United States

                Reviewed by: Jacob Raber, Oregon Health and Science University, United States; Wayne W. Poon, University of California, Irvine, United States; G. William Rebeck, Georgetown University, United States

                *Correspondence: Donna M. Wilcock, donna.wilcock@ 123456uky.edu

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00754
                7203730
                32425941
                70f37547-ee6d-4c41-9101-0c67174dcb58
                Copyright © 2020 Kloske and Wilcock.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 February 2020
                : 02 April 2020
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 168, Pages: 12, Words: 0
                Funding
                Funded by: National Institute on Aging 10.13039/100000049
                Categories
                Immunology
                Review

                Immunology
                microglia,cytokines,dementia,apolipoprotein e allele,neuroinflammation
                Immunology
                microglia, cytokines, dementia, apolipoprotein e allele, neuroinflammation

                Comments

                Comment on this article