5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells.

      Carcinogenesis
      Carcinoma, Hepatocellular, genetics, metabolism, Cysteine Endopeptidases, physiology, DNA, Neoplasm, DNA-Binding Proteins, Gene Expression, drug effects, Heme Oxygenase (Decyclizing), biosynthesis, Hepatocyte Growth Factor, pharmacology, Humans, Hypoxia-Inducible Factor 1, Hypoxia-Inducible Factor 1, alpha Subunit, Liver Neoplasms, MAP Kinase Signaling System, Mitogen-Activated Protein Kinases, Multienzyme Complexes, Nuclear Proteins, Oxidation-Reduction, Phosphatidylinositol 3-Kinases, Proteasome Endopeptidase Complex, RNA, Messenger, Receptors, Cell Surface, Receptors, Urokinase Plasminogen Activator, Transcription Factors, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocyte growth factor (HGF), a multifunctional cytokine of mesenchymal origin, activates the DNA binding of hypoxia inducible factor-1 (HIF-1) in the HepG2 cell line: the activated complex contained the inducible alpha subunit. An increased expression of HIF-1alpha (mRNA and nuclear protein levels) was observed. To investigate the molecular basis of the HIF-1 response under this non-hypoxic condition, we evaluated first the expression of putative target genes. We found a time-dependent increase in steady-state mRNA levels of heme oxygenase and urokinase plasminogen activator at 4 h, followed by that of urokinase receptor at 10 h. The enhanced expression of these genes might confer the invasive phenotype, since HGF is a proliferative and scatter factor. Second, we examined some aspects of HIF-1 activity regulation in HGF-treated cells with the following findings: (i) the activation of HIF-1 DNA binding was prevented by proteasome blockade, probably because stabilization of the cytosolic alpha-subunit protein level is not sufficient to generate a functional form: also under these conditions nuclear protein level of HIF-1alpha did not increase; (ii) N-acetylcysteine, a free radical scavenger, strongly decreased HIF-1 activation suggesting a role of reactive oxygen species in this process; (iii) the thiol reducing agent dithiothreitol was ineffective. Third, consistent with these data, N-acetylcysteine reduced the stimulatory effect of HGF on stress kinase activities, while p42/44 mitogen activated kinase (MAPK) was unmodified, suggesting an involvement of c-Jun-N-terminal kinase (JNK) and p38 MAPK in HIF-1 activation. Finally, LY 294002 induced the blockade of phosphatidylinositol 3-kinase (PI3K), one of the principal transducers of HGF/Met receptor signalling, prevented the enhancement of HIF-1 DNA binding and JNK activity, but the inhibition of p42/44 MAPK phosphorylation with PD 98059 was ineffective. In conclusion, we suggest that HGF triggers a signal transduction cascade involving PI3K and ultimately activates HIF-1.

          Related collections

          Author and article information

          Comments

          Comment on this article