1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH(Boehmite)@SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb(II) removal

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Monodisperse magnetic single-crystal ferrite microspheres.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water.

            Humic acid (HA) coated Fe3O4 nanoparticles (Fe3O4/HA) were developed for the removal of toxic Hg(II), Pb(II), Cd(II), and Cu(II) from water. Fe3O4/HA were prepared by a coprecipitation procedure with cheap and environmentally friendly iron salts and HA. TOC and XPS analysis showed the as-prepared Fe3O4/HA contains approximately 11% (w/w) of HA which are fractions abundant in O and N-based functional groups. TEM images and laser particle size analysis revealed the Fe3O4/HA (with approximately 10 nm Fe3O4 cores) aggregated in aqueous suspensions to form aggregates with an average hydrodynamic size of approximately 140 nm. With a saturation magnetization of 79.6 emu/g, the Fe3O4/HA can be simply recovered from water with magnetic separations at low magnetic field gradients within a few minutes. Sorption of the heavy metals to Fe3O4/HA reached equilibrium in less than 15 min, and agreed well to the Langmuir adsorption model with maximum adsorption capacities from 46.3 to 97.7 mg/g. The Fe3O4/HA was stable in tap water, natural waters, and acidic/ basic solutions ranging from 0.1 M HCl to 2 M NaOH with low leaching of Fe (< or = 3.7%) and HA (< or = 5.3%). The Fe3O4/HA was able to remove over 99% of Hg(ll) and Pb(ll) and over 95% of Cu(II) and Cd(II) in natural and tap water at optimized pH. Leaching back of the Fe3O4/HA sorbed heavy metals in water was found to be negligible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal.

              A novel amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanomaterial with a core-shell structure was developed, aiming to remove heavy metal ions from aqueous media. The structural, surface, and magnetic characteristics of the nanosized adsorbent were investigated by elemental analysis, FTIR, N(2) adsorption-desorption, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, and zeta-potential measurement. The amino-functionalized Fe(3)O(4)@SiO(2) nanoadsorbent exhibited high adsorption affinity for aqueous Cu(II), Pb(II), and Cd(II) ions, resulting from complexation of the metal ions by surface amino groups. Moreover, the adsorption affinity for heavy metal ions was not much impacted by the presence of a cosolute of humic acid (10.6mg/L) or alkali/earth metal ions (Na(+), K(+), Mg(2+)) (0.025-0.30mmol/L). The metal-loaded Fe(3)O(4)@SiO(2)-NH(2) nanoparticles could be recovered readily from aqueous solution by magnetic separation and regenerated easily by acid treatment. Findings of the present work highlight the potential for using amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanoparticles as an effective and recyclable adsorbent for the removal of heavy metal ions in water and wastewater treatment. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                JMACEP
                Journal of Materials Chemistry
                J. Mater. Chem.
                Royal Society of Chemistry (RSC)
                0959-9428
                1364-5501
                2011
                2011
                : 21
                : 41
                : 16550
                Article
                10.1039/c1jm12196k
                71052bc5-811e-45f7-ab6b-faba420bf229
                © 2011
                History

                Comments

                Comment on this article