22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biocontrol of Cereal Crop Diseases Using Streptomycetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.

            Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant-microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant-microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Regulation and function of root exudates

                Bookmark

                Author and article information

                Journal
                Pathogens
                Pathogens
                pathogens
                Pathogens
                MDPI
                2076-0817
                13 June 2019
                June 2019
                : 8
                : 2
                : 78
                Affiliations
                School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; j.newitt@ 123456uea.ac.uk (J.T.N.); s.prudence@ 123456uea.ac.uk (S.M.M.P.)
                Author notes
                [* ]Correspondence: m.hutchings@ 123456uea.ac.uk (M.I.H.); s.worsley@ 123456uea.ac.uk (S.F.W.)
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-1749-8787
                https://orcid.org/0000-0003-4736-0938
                Article
                pathogens-08-00078
                10.3390/pathogens8020078
                6630304
                31200493
                710fc764-6487-4bf8-8847-408ae9ed4b83
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 May 2019
                : 09 June 2019
                Categories
                Review

                streptomyces,biocontrol,cereals,root microbiome,rhizosphere
                streptomyces, biocontrol, cereals, root microbiome, rhizosphere

                Comments

                Comment on this article