0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of the Imaged cIEF Method for Monitoring the Charge Heterogeneity of Antibody-Maytansine Conjugate

      research-article
      Journal of Analytical Methods in Chemistry
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to develop a whole-column imaging-detection capillary isoelectric focusing (icIEF) method for the analytical characterization of charge heterogeneity of a novel humanized anti-EphA2 antibody conjugated to a maytansine derivative. In addition to focusing time, sample composition was optimized: pH range, percent of carrier ampholytes, conjugated antibody concentration, and urea concentration. A good separation of charge isoforms was obtained with 4% carrier ampholytes of a large (3–10) and narrow pH range (8–10.5) (1 : 1 ratio), conjugated antibody concentration (0.3–1 mg/ml) with a good linearity ( R 2: 0.9905), 2 M of urea concentration, and 12 minute for focusing. The optimized icIEF method demonstrated a good interday repeatability with RSD values: <1% (pI), <8% (% peak area), and 7% (total peak areas). The optimized icIEF was useful as an analytical characterization tool to assess the charged isoform profile of a discovery batch of the studied maytansinoid-antibody conjugate in comparison to its naked antibody. It exhibited a large pI range (7.5–9.0), while its naked antibody showed a narrow pI range (8.9–9.0). In the discovery batch of maytansinoid-antibody conjugate, 2% of charge isoforms had the same pI as the pI of naked antibody isoforms.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Unlocking the potential of antibody–drug conjugates for cancer therapy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibody-Drug Conjugates: A Comprehensive Review.

            Antibody-drug conjugates (ADC) are one of the fastest growing anticancer drugs. This approach comprises a mAb conjugated to the cytotoxic payload via a chemical linker that directed toward a target antigen expressed on the cancer cell surface, reducing systemic exposure and therefore toxicity. ADCs are complex molecules that require careful attention to various components. Selection of an appropriate target, an mAb, cytotoxic payload, and the manner in which the antibody is linked to the payload are key determinants of the safety and efficacy of ADCs. This review provides an overview of the systemic evaluation of each component of an ADC design, improved understanding of the mechanism of action of ADC, and mechanistic pathways involved in ADC resistance and various strategies to optimize ADC design. Moreover, this review also shed light on the current status of ADCs that have gained regulatory approval from the FDA including a description of biology and chemistry, metabolic profiles, adverse events, drug interactions, and the future perspective on combination strategies with other agents, including immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibody-drug conjugates: recent advances in conjugation and linker chemistries

              The antibody-drug conjugate (ADC), a humanized or human monoclonal antibody conjugated with highly cytotoxic small molecules (payloads) through chemical linkers, is a novel therapeutic format and has great potential to make a paradigm shift in cancer chemotherapy. This new antibody-based molecular platform enables selective delivery of a potent cytotoxic payload to target cancer cells, resulting in improved efficacy, reduced systemic toxicity, and preferable pharmacokinetics (PK)/pharmacodynamics (PD) and biodistribution compared to traditional chemotherapy. Boosted by the successes of FDA-approved Adcetris® and Kadcyla®, this drug class has been rapidly growing along with about 60 ADCs currently in clinical trials. In this article, we briefly review molecular aspects of each component (the antibody, payload, and linker) of ADCs, and then mainly discuss traditional and new technologies of the conjugation and linker chemistries for successful construction of clinically effective ADCs. Current efforts in the conjugation and linker chemistries will provide greater insights into molecular design and strategies for clinically effective ADCs from medicinal chemistry and pharmacology standpoints. The development of site-specific conjugation methodologies for constructing homogeneous ADCs is an especially promising path to improving ADC design, which will open the way for novel cancer therapeutics.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Anal Methods Chem
                J Anal Methods Chem
                jamc
                Journal of Analytical Methods in Chemistry
                Hindawi
                2090-8865
                2090-8873
                2023
                2 June 2023
                : 2023
                : 8150143
                Affiliations
                Department of Medicinal Chemistry and Quality Control, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
                Author notes

                Academic Editor: Boris Gorovits

                Author information
                https://orcid.org/0000-0001-8387-3875
                Article
                10.1155/2023/8150143
                10256444
                37305029
                71131cf0-36d6-4c2b-9ba1-0cc1281675cd
                Copyright © 2023 Ayat Abbood.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 September 2022
                : 14 November 2022
                : 23 May 2023
                Funding
                Funded by: Tishreen University
                Categories
                Research Article

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article