22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Amyloidogenic Sequence at the N-Terminus of the Androgen Receptor Impacts Polyglutamine Aggregation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human androgen receptor (AR) is a ligand inducible transcription factor that harbors an amino terminal domain (AR-NTD) with a ligand-independent activation function. AR-NTD is intrinsically disordered and displays aggregation properties conferred by the presence of a poly-glutamine (polyQ) sequence. The length of the polyQ sequence as well as its adjacent sequence motifs modulate this aggregation property. AR-NTD also contains a conserved KELCKAVSVSM sequence motif that displays an intrinsic property to form amyloid fibrils under mild oxidative conditions. As peptide sequences with intrinsic oligomerization properties are reported to have an impact on the aggregation of polyQ tracts, we determined the effect of the KELCKAVSVSM on the polyQ stretch in the context of the AR-NTD using atomic force microscopy (AFM). Here, we present evidence for a crosstalk between the amyloidogenic properties of the KELCKAVSVSM motif and the polyQ stretch at the AR-NTD.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          1H, 13C and 15N chemical shift referencing in biomolecular NMR.

          A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SUMO fusion technology for difficult-to-express proteins

            The demands of structural and functional genomics for large quantities of soluble, properly folded proteins in heterologous hosts have been aided by advancements in the field of protein production and purification. Escherichia coli, the preferred host for recombinant protein expression, presents many challenges which must be surmounted in order to over-express heterologous proteins. These challenges include the proteolytic degradation of target proteins, protein misfolding, poor solubility, and the necessity for good purification methodologies. Gene fusion technologies have been able to improve heterologous expression by overcoming many of these challenges. The ability of gene fusions to improve expression, solubility, purification, and decrease proteolytic degradation will be discussed in this review. The main disadvantage, cleaving the protein fusion, will also be addressed. Focus will be given to the newly described SUMO fusion system and the improvements that this technology has advanced over traditional gene fusion systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flanking sequences profoundly alter polyglutamine toxicity in yeast.

              Protein misfolding is the molecular basis for several human diseases. How the primary amino acid sequence triggers misfolding and determines the benign or toxic character of the misfolded protein remains largely obscure. Among proteins that misfold, polyglutamine (polyQ) expansion proteins provide an interesting case: Each causes a distinct neurodegenerative disease that selectively affects different neurons. However, all are broadly expressed and most become toxic when the glutamine expansion exceeds approximately 39 glutamine residues. The disease-causing polyQ expansion proteins differ profoundly in the amino acids flanking the polyQ region. We therefore hypothesized that these flanking sequences influence the specific toxic character of each polyQ expansion protein. Using a yeast model, we find that sequences flanking the polyQ region of human huntingtin exon I can convert a benign protein to a toxic species and vice versa. Further, we observe that flanking sequences can direct polyQ misfolding to at least two morphologically distinct types of polyQ aggregates. Very tight aggregates always are benign, whereas amorphous aggregates can be toxic. We thereby establish a previously undescribed systematic characterization of the influence of flanking amino acid sequences on polyQ toxicity.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                19 June 2017
                June 2017
                : 7
                : 2
                : 44
                Affiliations
                [1 ]Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch–Graffenstaden, France; emmanopp@ 123456yahoo.com (E.O.); Delsuc@ 123456igbmc.fr (M.-A.D.)
                [2 ]Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany; gunter.stier@ 123456bzh.uni-heidelberg.de
                [3 ]Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; miriamgaal@ 123456icloud.com (M.G.); rebecca.seeger@ 123456kit.edu (R.S.)
                [4 ]Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; melanie.stoeck@ 123456gmx.de
                Author notes
                [* ]Correspondence: andrew.cato@ 123456kit.edu (A.C.B.C.); kieffer@ 123456igbmc.fr (B.K.); Tel.: +49-721-608-22146 (A.C.B.C.); +33-3-68-85-47-22 (B.K.)
                Article
                biomolecules-07-00044
                10.3390/biom7020044
                5485733
                28629183
                711a9803-e6b3-432f-a339-073713af5bf7
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 May 2017
                : 12 June 2017
                Categories
                Article

                amyloid peptides,androgen receptor,nuclear receptor,aggregation,atomic force microscopy

                Comments

                Comment on this article