28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Syntaxins are a family of membrane-integrated proteins that are instrumental in exocytosis of vesicles. Syntaxin-1 is an essential component of the presynaptic exocytotic fusion machinery in the brain and interacts with several other proteins. Syntaxin-1 forms a four-helical bundle complex with proteins SNAP-25 and VAMP2 that drives fusion of vesicles with the plasma membrane in the active zone (AZ). Little is known, however, about the ultrastructural localization of syntaxin-1 at the synapse. We have analyzed the intrasynaptic expression of syntaxin-1 in glutamatergic hippocampal synapses in detail by using quantitative postembedding immunogold labeling. Syntaxin-1 was present in highest concentrations at the presynaptic AZ, supporting its role in transmitter release. Presynaptic plasma membrane lateral to the AZ, as well as presynaptic cytoplasmic (PreCy) vesicles were also labeled. However, syntaxin-1 was also significantly expressed in postsynaptic spines, where it was localized at the postsynaptic density (PSD), at postsynaptic lateral membranes and in postsynaptic cytoplasm. Postsynaptically, syntaxin-1 colocalized in the nanometer range with the N-methyl-D-aspartate (NMDA) receptor subunit NR2B, but only weakly with the AMPA receptor subunits GluA2/3. This observation points to the possibility that syntaxin-1 may be involved with NR2B vesicular trafficking from cytoplasmic stores to the postsynaptic plasma membrane, thus facilitating synaptic plasticity. Confocal immunofluorescence double labeling with PSD-95 and ultrastructural fractionation of synaptosomes also confirm localization of syntaxin-1 at the PSD.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.

          The SNARE hypothesis holds that a transport vesicle chooses its target for fusion when a soluble NSF attachment protein (SNAP) receptor on the vesicle (v-SNARE) pairs with its cognate t-SNARE at the target membrane. Three synaptosomal membrane proteins have previously been identified: syntaxin, SNAP-25 (t-SNAREs), and vesicle-associated membrane protein (VAMP) (v-SNARE); all assemble with SNAPs and NSF into 20S fusion particles. We now report that in the absence of SNAP and NSF, these three SNAREs form a stable complex that can also bind synaptotagmin. Synaptotagmin is displaced by alpha-SNAP, suggesting that these two proteins share binding sites on the SNARE complex and implying that synaptotagmin operates as a "clamp" to prevent fusion from proceeding in the absence of a signal. The alpha-SNAP-SNARE complex can bind NSF, and NSF-dependent hydrolysis of ATP dissociates the complex, separating syntaxin, SNAP-25, and VAMP. ATP hydrolysis by NSF may provide motion to initiate bilayer fusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unraveling mechanisms of homeostatic synaptic plasticity.

            Homeostatic synaptic plasticity is a negative feedback mechanism that neurons use to offset excessive excitation or inhibition by adjusting their synaptic strengths. Recent findings reveal a complex web of signaling processes involved in this compensatory form of synaptic strength regulation, and in contrast to the popular view of homeostatic plasticity as a slow, global phenomenon, neurons may also rapidly tune the efficacy of individual synapses on demand. Here we review our current understanding of cellular and molecular mechanisms of homeostatic synaptic plasticity. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons.

              Long-term potentiation (LTP) of excitatory transmission in the hippocampus likely contributes to learning and memory. The mechanisms underlying LTP at these synapses are not well understood, although phosphorylation and redistribution of AMPA receptors may be responsible for this form of synaptic plasticity. We show here that miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons reliably demonstrate LTP when postsynaptic NMDA receptors are briefly stimulated with glycine. LTP of these synapses is accompanied by a rapid insertion of native AMPA receptors and by increased clustering of AMPA receptors at the surface of dendritic membranes. Both LTP and glycine-facilitated AMPA receptor insertion are blocked by intracellular tetanus toxin (TeTx), providing evidence that AMPA receptors are inserted into excitatory synapses via a SNARE-dependent exocytosis during LTP.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                05 February 2016
                2016
                : 9
                : 10
                Affiliations
                [1]Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo Oslo, Norway
                Author notes

                Edited by: Ildikó Rácz, University of Bonn, Germany

                Reviewed by: Fabrizio Gardoni, University of Milano, Italy; Jaewon Ko, Yonsei University, South Korea; Andras Bilkei-Gorzo, University of Bonn, Germany

                *Correspondence: Svend Davanger svend.davanger@ 123456medisin.uio.no
                Article
                10.3389/fnmol.2016.00010
                4742905
                26903802
                7129b81a-409c-4bfa-8b72-1ae69ea470de
                Copyright © 2016 Hussain, Ringsevjen, Egbenya, Skjervold and Davanger.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 November 2015
                : 18 January 2016
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 33, Pages: 13, Words: 7722
                Categories
                Neuroscience
                Original Research

                Neurosciences
                snare,synapse,vesicles,hippocampus,psd,active zone,electron microscopy,nmda
                Neurosciences
                snare, synapse, vesicles, hippocampus, psd, active zone, electron microscopy, nmda

                Comments

                Comment on this article