13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Self-Control as Value-Based Choice

      , , , ,
      Current Directions in Psychological Science
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Self-control is often conceived as a battle between "hot" impulsive processes and "cold" deliberative ones. Heeding the angel on one shoulder leads to success; following the demon on the other leads to failure. Self-control feels like a duality. What if that sensation is misleading, and, despite how they feel, self-control decisions are just like any other choice? We argue that self-control is a form of value-based choice wherein options are assigned a subjective value and a decision is made through a dynamic integration process. We articulate how a value-based choice model of self-control can capture its phenomenology and account for relevant behavioral and neuroscientific data. This conceptualization of self-control links divergent scientific approaches, allows for more robust and precise hypothesis testing, and suggests novel pathways to improve self-control.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Separate neural systems value immediate and delayed monetary rewards.

          When humans are offered the choice between rewards available at different points in time, the relative values of the options are discounted according to their expected delays until delivery. Using functional magnetic resonance imaging, we examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery. We demonstrate that two separate systems are involved in such decisions. Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. Furthermore, the relative engagement of the two systems is directly associated with subjects' choices, with greater relative fronto-parietal activity when subjects choose longer term options.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-control in decision-making involves modulation of the vmPFC valuation system.

            Every day, individuals make dozens of choices between an alternative with higher overall value and a more tempting but ultimately inferior option. Optimal decision-making requires self-control. We propose two hypotheses about the neurobiology of self-control: (i) Goal-directed decisions have their basis in a common value signal encoded in ventromedial prefrontal cortex (vmPFC), and (ii) exercising self-control involves the modulation of this value signal by dorsolateral prefrontal cortex (DLPFC). We used functional magnetic resonance imaging to monitor brain activity while dieters engaged in real decisions about food consumption. Activity in vmPFC was correlated with goal values regardless of the amount of self-control. It incorporated both taste and health in self-controllers but only taste in non-self-controllers. Activity in DLPFC increased when subjects exercised self-control and correlated with activity in vmPFC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visual fixations and the computation and comparison of value in simple choice.

              Most organisms facing a choice between multiple stimuli will look repeatedly at them, presumably implementing a comparison process between the items' values. Little is known about the nature of the comparison process in value-based decision-making or about the role of visual fixations in this process. We created a computational model of value-based binary choice in which fixations guide the comparison process and tested it on humans using eye-tracking. We found that the model can quantitatively explain complex relationships between fixation patterns and choices, as well as several fixation-driven decision biases.
                Bookmark

                Author and article information

                Journal
                Current Directions in Psychological Science
                Curr Dir Psychol Sci
                SAGE Publications
                0963-7214
                1467-8721
                October 10 2017
                October 09 2017
                : 26
                : 5
                : 422-428
                Article
                10.1177/0963721417704394
                5765996
                29335665
                7134faa7-b324-40a3-8256-7bfe0a199dc5
                © 2017

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article