14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Even though the well-established Haber-Bosch process has been the major artificial way to "fertilize" the earth, its energy-intensive nature has been motivating people to learn from nitrogenase, which can fix atmospheric N2 to NH3 in vivo under mild conditions with its precisely arranged proteins. Here we demonstrate that efficient fixation of N2 to NH3 can proceed under room temperature and atmospheric pressure in water using visible light illuminated BiOBr nanosheets of oxygen vacancies in the absence of any organic scavengers and precious-metal cocatalysts. The designed catalytic oxygen vacancies of BiOBr nanosheets on the exposed {001} facets, with the availability of localized electrons for π-back-donation, have the ability to activate the adsorbed N2, which can thus be efficiently reduced to NH3 by the interfacial electrons transferred from the excited BiOBr nanosheets. This study might open up a new vista to fix atmospheric N2 to NH3 through the less energy-demanding photochemical process.

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          1520-5126
          0002-7863
          May 20 2015
          : 137
          : 19
          Article
          10.1021/jacs.5b03105
          25874655
          71492204-ef65-47a2-8bb4-d7e55d212dbd
          History

          Comments

          Comment on this article