59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The intensity of physical activity influences bone mineral accrual in childhood: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Studies indicate genetic and lifestyle factors can contribute to optimal bone development. In particular, the intensity level of physical activity may have an impact on bone health. This study aims to assess the relationship between physical activity at different intensities and Bone Mineral Content (BMC), Bone Mineral Density (BMD) and Bone Area (BA) accretion.

          Methods

          This longitudinal study is a part of The CHAMPS study-DK. Whole-body DXA scans were performed at baseline and after two years follows up. BMC, BMD, and BA were measured. The total body less head (TBLH) values were used. Physical activity (PA) was recorded by accelerometers (ActiGraph, model GT3X). Percentages of different PA intensity levels were calculated and log odds of two intensity levels of activity relative to the third level were calculated. Multilevel regression analyses were used to assess the relationship between the categories of physical activity and bone traits.

          Results

          Of 800 invited children, 742 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow up. Complete datasets were obtained in 602/742 (81%) children. Mean (range) of age was 11.5 years (9.7-13.9). PA at different intensity levels was for boys and girls respectively, sedentary 62% and 64%, low 29% for both genders and moderate to high 9% and 7% of the total time. Mean (range) BMC, BMD, and BA was 1179 g (563–2326), 0.84 g/cm 2 (0.64-1.15) and 1393 cm 2 (851–2164), respectively. Valid accelerometer data were obtained for a mean of 6.1 days, 13 hours per day.

          Conclusions

          There 7was a positive relationship between the log odds of moderate to high-level PA versus low level activity and BMC, BMD and BA. Children with an increased proportion of time in moderate to high-level activity as opposed to sedentary and low-level activity achieved positive effects on BMC, BMD and BA.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis: now and the future.

          Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoporosis prevention, diagnosis, and therapy.

            (2001)
            To clarify the factors associated with prevention, diagnosis, and treatment of osteoporosis, and to present the most recent information available in these areas. From March 27-29, 2000, a nonfederal, nonadvocate, 13-member panel was convened, representing the fields of internal medicine, family and community medicine, endocrinology, epidemiology, orthopedic surgery, gerontology, rheumatology, obstetrics and gynecology, preventive medicine, and cell biology. Thirty-two experts from these fields presented data to the panel and an audience of 699. Primary sponsors were the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institutes of Health Office of Medical Applications of Research. MEDLINE was searched for January 1995 through December 1999, and a bibliography of 2449 references provided to the panel. Experts prepared abstracts for presentations with relevant literature citations. Scientific evidence was given precedence over anecdotal experience. The panel, answering predefined questions, developed conclusions based on evidence presented in open forum and the literature. The panel composed a draft statement, which was read and circulated to the experts and the audience for public discussion. The panel resolved conflicts and released a revised statement at the end of the conference. The draft statement was posted on the Web on March 30, 2000, and updated with the panel's final revisions within a few weeks. Though prevalent in white postmenopausal women, osteoporosis occurs in all populations and at all ages and has significant physical, psychosocial, and financial consequences. Risks for osteoporosis (reflected by low bone mineral density [BMD]) and for fracture overlap but are not identical. More attention should be paid to skeletal health in persons with conditions associated with secondary osteoporosis. Clinical risk factors have an important but poorly validated role in determining who should have BMD measurement, in assessing fracture risk, and in determining who should be treated. Adequate calcium and vitamin D intake is crucial to develop optimal peak bone mass and to preserve bone mass throughout life. Supplementation with these 2 nutrients may be necessary in persons not achieving recommended dietary intake. Gonadal steroids are important determinants of peak and lifetime bone mass in men, women, and children. Regular exercise, especially resistance and high-impact activities, contributes to development of high peak bone mass and may reduce risk of falls in older persons. Assessment of bone mass, identification of fracture risk, and determination of who should be treated are the optimal goals when evaluating patients for osteoporosis. Fracture prevention is the primary treatment goal for patients with osteoporosis. Several treatments have been shown to reduce the risk of osteoporotic fractures, including those that enhance bone mass and reduce the risk or consequences of falls. Adults with vertebral, rib, hip, or distal forearm fractures should be evaluated for osteoporosis and given appropriate therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using objective physical activity measures with youth: how many days of monitoring are needed?

              The purpose of this study was to establish the minimal number of days of monitoring required for accelerometers to assess usual physical activity in children. A total of 381 students (189 M, 192 F) wore a CSA 7164 uniaxial accelerometer for seven consecutive days. To examine age-related trends students were grouped as follows: Group I: grades 1-3 (N = 92); Group II: grades 4-6 (N = 98); Group III: grades 7-9 (N = 97); Group IV: grades 10-12 (N = 94). Average daily time spent in moderate-to-vigorous physical activity (MVPA) was calculated from minute-by-minute activity counts using the regression equation developed by Freedson et al. (1997). Compared with adolescents in grades 7 to 12, children in grades 1 to 6 exhibited less day-to-day variability in MVPA behavior. Spearman-Brown analyses indicated that between 4 and 5 d of monitoring would be necessary to a achieve a reliability of 0.80 in children, and between 8 and 9 d of monitoring would be necessary to achieve a reliability of 0.80 in adolescents. Within all grade levels, the 7-d monitoring protocol produced acceptable estimates of daily participation in MVPA (R = 0.76 (0.71-0.81) to 0.87 (0.84-0.90)). Compared with weekdays, children exhibited significantly higher levels of MVPA on weekends, whereas adolescents exhibited significantly lower levels of MVPA on weekends. Principal components analysis revealed two distinct time components for MVPA during the day for children (early morning, rest of the day), and three distinct time components for MVPA during the day for adolescents (morning, afternoon, early evening). These results indicate that a 7-d monitoring protocol provides reliable estimates of usual physical activity behavior in children and adolescents and accounts for potentially important differences in weekend versus weekday activity behavior as well as differences in activity patterns within a given day.
                Bookmark

                Author and article information

                Journal
                BMC Pediatr
                BMC Pediatr
                BMC Pediatrics
                BioMed Central
                1471-2431
                2013
                2 March 2013
                : 13
                : 32
                Affiliations
                [1 ]Hans Christian Andersen Children’s Hospital, Odense University Hospital, Sdr. Boulevard 29, Odense C DK-5000, Denmark
                [2 ]Spine Centre of Southern Denmark, Hospital Lillebaelt, Middelfart, Denmark
                [3 ]RICH, Centre of Research in Childhood Health, University of Southern Denmark, Odense, Denmark
                [4 ]Institute of Regional Health Research, Department of Biostatistics, University of Southern Denmark, Odense, Denmark
                [5 ]Department of Nutrition, Exercise and sport, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
                Article
                1471-2431-13-32
                10.1186/1471-2431-13-32
                3599700
                23452342
                7149b82a-22fe-41df-9427-03644e3abe27
                Copyright ©2013 Heidemann et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 May 2012
                : 25 February 2013
                Categories
                Research Article

                Pediatrics
                dual energy x- ray absorptiometry,bone health,physical activity,accelerometers
                Pediatrics
                dual energy x- ray absorptiometry, bone health, physical activity, accelerometers

                Comments

                Comment on this article