815
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomal cell-to-cell transmission of alpha synuclein oligomers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Aggregation of alpha-synuclein (αsyn) and resulting cytotoxicity is a hallmark of sporadic and familial Parkinson’s disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and pre-fibrillar forms of αsyn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread of extracellular, secreted αsyn across membranes. The aim of this study is to characterize the transcellular spread of αsyn oligomers and determine their extracellular location.

          Results

          Using a novel protein fragment complementation assay where αsyn is fused to non-bioluminescent amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that αsyn oligomers can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated αsyn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free αsyn oligomers. Specifically, we determine that αsyn oligomers are present on both the outside as well as inside of exosomes. Notably, the pathway of secretion of αsyn oligomers is strongly influenced by autophagic activity.

          Conclusions

          Our data suggest that αsyn may be secreted via different secretory pathways. We hypothesize that exosome-mediated release of αsyn oligomers is a mechanism whereby cells clear toxic αsyn oligomers when autophagic mechanisms fail to be sufficient. Preventing the early events in αsyn exosomal release and uptake by inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.

          Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

            Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.

              Normal and malignant cells shed from their surface membranes as well as secrete from the endosomal membrane compartment circular membrane fragments called microvesicles (MV). MV that are released from viable cells are usually smaller in size compared to the apoptotic bodies derived from damaged cells and unlike them do not contain fragmented DNA. Growing experimental evidence indicates that MV are an underappreciated component of the cell environment and play an important pleiotropic role in many biological processes. Generally, MV are enriched in various bioactive molecules and may (i) directly stimulate cells as a kind of 'signaling complex', (ii) transfer membrane receptors, proteins, mRNA and organelles (e.g., mitochondria) between cells and finally (iii) deliver infectious agents into cells (e.g., human immuno deficiency virus, prions). In this review, we discuss the pleiotropic effects of MV that are important for communication between cells, as well as the role of MV in carcinogenesis, coagulation, immune responses and modulation of susceptibility/infectability of cells to retroviruses or prions.
                Bookmark

                Author and article information

                Journal
                Mol Neurodegener
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central
                1750-1326
                2012
                24 August 2012
                : 7
                : 42
                Affiliations
                [1 ]MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
                [2 ]Advanced Tissue Resource Center, Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
                [3 ]Present address: Neurology Department, University of Ulm, Ulm, Germany
                [4 ]Present address: Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
                Article
                1750-1326-7-42
                10.1186/1750-1326-7-42
                3483256
                22920859
                714bfd46-47c3-4fcd-bdec-414d0f526b71
                Copyright ©2012 Danzer et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 April 2012
                : 14 August 2012
                Categories
                Research Article

                Neurosciences
                secretion,alpha synuclein,aggregation,oligomers,exosomes,parkinson’s disease
                Neurosciences
                secretion, alpha synuclein, aggregation, oligomers, exosomes, parkinson’s disease

                Comments

                Comment on this article