10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      C-Type Natriuretic Peptide Analogue Therapy in Children with Achondroplasia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2416722e198">Achondroplasia is a genetic disorder that inhibits endochondral ossification, resulting in disproportionate short stature and clinically significant medical complications. Vosoritide is a biologic analogue of C-type natriuretic peptide, a potent stimulator of endochondral ossification. </p>

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway.

          Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth hormone — past, present and future

            Growth hormone (GH) research and its clinical application for the treatment of growth disorders span more than a century. During the first half of the 20th century, clinical observations and anatomical and biochemical studies formed the basis of the understanding of the structure of GH and its various metabolic effects in animals. The following period (1958-1985), during which pituitary-derived human GH was used, generated a wealth of information on the regulation and physiological role of GH - in conjunction with insulin-like growth factors (IGFs) - and its use in children with GH deficiency (GHD). The following era (1985 to present) of molecular genetics, recombinant technology and the generation of genetically modified biological systems has expanded our understanding of the regulation and role of the GH-IGF axis. Today, recombinant human GH is used for the treatment of GHD and various conditions of non-GHD short stature and catabolic states; however, safety concerns still accompany this therapeutic approach. In the future, new therapeutics based on various components of the GH-IGF axis might be developed to further improve the treatment of such disorders. In this Review, we describe the history of GH research and clinical use with a particular focus on disorders in childhood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dwarfism and early death in mice lacking C-type natriuretic peptide.

              Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc(-/-) mice). The Nppc(-/-) mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc(-/-) mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                June 18 2019
                June 18 2019
                Affiliations
                [1 ]From Murdoch Children’s Research Institute, Royal Children’s Hospital, University of Melbourne, Parkville, VIC, Australia (R.S.); Guy’s and St. Thomas’ NHS Foundation Trust, Evelina Children’s Hospital, London (M.I.); Baylor College of Medicine, Houston (C.A.B., B.B.); Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago (J.C.); the Medical Genetics Department, Université Paris Descartes–Sorbonne Paris Cité, INSERM Unité Mixte de Recherche 1163, Institute Imagine, Assistance Publique–Hôpitaux...
                Article
                10.1056/NEJMoa1813446
                31269546
                7153819c-8b61-4287-a8f3-f3f8c76426e5
                © 2019

                http://www.nejmgroup.org/legal/terms-of-use.htm

                History

                Comments

                Comment on this article