2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction of a long non-coding RNA-mediated competitive endogenous RNA network reveals global patterns and regulatory markers in gestational diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gestational diabetes mellitus (GDM) is a common disease affecting pregnant women. Recent studies have suggested that competing endogenous RNAs (ceRNAs), which compete with long non-coding RNAs (lncRNAs) for microRNA (miRNA or miR) binding and indirectly regulate miRNA targets through competing interactions, play a critical role in disease. In this study, we present a computationally integrated approach with which to construct a lncRNA-mediated ceRNA network (LCEN) in GDM by integrating RNA interactions and expression data. lncRNAs exhibited specific features and played critical roles in GDM-associated LCEN. The construction of a global functional score profile revealed that ceRNAs had a high activity in GDM. We extracted several ceRNA modules and demonstrated that these modules had increased close interactions. We further discovered that these ceRNA modules may be utilized as specific and effective circulating biomarkers for GDM. Finally, functional analyses demonstrated that the GDM-associated ceRNAs participated in the regulation of irisin and the thyroid hormone signaling pathway. It was suggested that there were close associations between the thyroid hormone and GDM. Collectively, ceRNAs may accelerate biomarker discovery and therapeutic development in GDM.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Classes of behavior of small-world networks

          Small-world networks are the focus of recent interest because they appear to circumvent many of the limitations of either random networks or regular lattices as frameworks for the study of interaction networks of complex systems. Here, we report an empirical study of the statistical properties of a variety of diverse real-world networks. We present evidence of the occurrence of three classes of small-world networks: (a) scale-free networks, characterized by a vertex connectivity distribution that decays as a power law; (b) broad-scale networks, characterized by a connectivity distribution that has a power-law regime followed by a sharp cut-off; (c) single-scale networks, characterized by a connectivity distribution with a fast decaying tail. Moreover, we note for the classes of broad-scale and single-scale networks that there are constraints limiting the addition of new links. Our results suggest that the nature of such constraints may be the controlling factor for the emergence of different classes of networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance.

            Recently irisin (encoded by Fndc5 gene) has been reported to stimulate browning and uncoupling protein 1 expression in sc adipose tissue of mice. The objective of the study was to investigate FNDC5 gene expression in human muscle and adipose tissue and circulating irisin according to obesity, insulin sensitivity, and type 2 diabetes. Adipose tissue FNDC5 gene expression and circulating irisin (ELISA) were analyzed in 2 different cohorts (n = 125 and n = 76); muscle FNDC5 expression was also evaluated in a subcohort of 34 subjects. In vitro studies in human preadipocytes and adipocytes and in induced browning of 3T3-L1 cells (by means of retinoblastoma 1 silencing) were also performed. In both sc and visceral adipose tissue, FNDC5 gene expression decreased significantly in association with obesity and was positively associated with brown adipose tissue markers, lipogenic, insulin pathway-related, mitochondrial, and alternative macrophage gene markers and negatively associated with LEP, TNFα, and FSP27 (a known repressor of brown genes). Circulating irisin and irisin levels in adipose tissue were significantly associated with FNDC5 gene expression in adipose tissue. In muscle, the FNDC5 gene was 200-fold more expressed than in adipose tissue, and its expression was associated with body mass index, PGC1α, and other mitochondrial genes. In obese participants, FNDC5 gene expression in muscle was significantly decreased in association with type 2 diabetes. Interestingly, muscle FNDC5 gene expression was significantly associated with FNDC5 and UCP1 gene expression in visceral adipose tissue. In men, circulating irisin levels were negatively associated with obesity and insulin resistance. Irisin was secreted from human adipocytes into the media, and the induction of browning in 3T3-L1 cells led to increased secreted irisin levels. Decreased circulating irisin concentration and FNDC5 gene expression in adipose tissue and muscle from obese and type 2 diabetic subjects suggests a loss of brown-like characteristics and a potential target for therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling.

              The number and activity of brown adipocytes are linked to the ability of mammals to resist body fat accumulation. In some conditions, certain white adipose tissue (WAT) depots are readily convertible to a ''brown-like'' state, which is associated with weight loss. Irisin, a newly identified hormone, is secreted by skeletal muscles into circulation and promotes WAT "browning" with unknown mechanisms. In the current study, we demonstrated in mice that recombinant irisin decreased the body weight and improved glucose homeostasis. We further showed that irisin upregulated uncoupling protein-1 (UCP-1; a regulator of thermogenic capability of brown fat) expression. This effect was possibly mediated by irisin-induced phosphorylation of the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-related kinase (ERK) signaling pathways. Inhibition of the p38 MAPK by SB203580 and ERK by U0126 abolished the upregulatory effect of irisin on UCP-1. In addition, irisin also promoted the expression of betatrophin, another newly identified hormone that promotes pancreatic β-cell proliferation and improves glucose tolerance. In summary, our data suggest that irisin can potentially prevent obesity and associated type 2 diabetes by stimulating expression of WAT browning-specific genes via the p38 MAPK and ERK pathways.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                February 2019
                12 December 2018
                12 December 2018
                : 43
                : 2
                : 927-935
                Affiliations
                [1 ]Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University
                [2 ]Department of Endocrinology, The Second Hospital of Harbin, Harbin, Heilongjiang 150006, P.R. China
                Author notes
                Correspondence to: Dr Qiang Li, Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin, Heilongjiang 150006, P.R. China, E-mail: harbinlq@ 123456126.com
                Article
                ijmm-43-02-0927
                10.3892/ijmm.2018.4026
                6317690
                30569156
                71588d1a-0302-48c6-8fd6-1007c241ea45
                Copyright: © Leng et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 08 August 2018
                : 27 November 2018
                Categories
                Articles

                long non-coding rna,competitive endogenous rna,gestational diabetes,topological feature,circulating biomarker

                Comments

                Comment on this article