9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-Rate Time Integration on Overset Meshes

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overset meshes are an effective tool for the computational fluid dynamic simulation of problems with complex geometries or multiscale spatio-temporal features. When the maximum allowable timestep on one or more meshes is significantly smaller than on the remaining meshes, standard explicit time integrators impose inefficiencies for time-accurate calculations by requiring that all meshes advance with the smallest timestep. With the targeted use of multi-rate time integrators, separate meshes can be time-marched at independent rates to avoid wasteful computation while maintaining accuracy and stability. This work applies time-explicit multi-rate integrators to the simulation of the compressible Navier-Stokes equations discretized on overset meshes using summation-by-parts (SBP) operators and simultaneous approximation term (SAT) boundary conditions. We introduce a novel class of multi-rate Adams-Bashforth (MRAB) schemes that offer significant stability improvements and computational efficiencies for SBP-SAT methods. We present numerical results that confirm the numerical efficacy of MRAB integrators, outline a number of outstanding implementation challenges, and demonstrate a reduction in computational cost enabled by MRAB. We also investigate the use of our method in the setting of a large-scale distributed-memory parallel implementation where we discuss concerns involving load balancing and communication efficiency.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Article: not found

          SLEPc

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A history of Runge-Kutta methods

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stable and Accurate Artificial Dissipation

                Bookmark

                Author and article information

                Journal
                17 May 2018
                Article
                1805.06607
                71738f2f-fe65-4235-b41f-41ef570535ba

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                math.NA

                Numerical & Computational mathematics
                Numerical & Computational mathematics

                Comments

                Comment on this article