12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduction in Virulence over Time in Ostreid herpesvirus 1 (OsHV-1) Microvariants between 2011 and 2015 in Australia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France 2008 and caused significant economic losses as it became endemic and displaced the previously dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and 2015 from endemic waterways in Australia. This followed field observations of apparent reductions in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative mortality were observed for an isolate obtained in 2011 compared to isolates from 2014–2015. In keeping with other studies, the hazard of death was higher in oysters challenged by injection compared to challenge by cohabitation and the mortality was higher when the initial dose was 1 × 10 4 OsHV-1 DNA copies per oyster injection compared to 1 × 10 2 DNA copies. There was no difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose, suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1, as they were collected during disease outbreaks, the variation in virulence that was observed, when combined with prior data on subclinical infections, suggests that surveillance for low virulence genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management which utilize controlled exposure to attenuated strains of OsHV-1.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future.

          It has been more than two decades since the formulation of the so-called 'trade-off' hypothesis as an alternative to the then commonly accepted idea that parasites should always evolve towards avirulence (the 'avirulence hypothesis'). The trade-off hypothesis states that virulence is an unavoidable consequence of parasite transmission; however, since the 1990s, this hypothesis has been increasingly challenged. We discuss the history of the study of virulence evolution and the development of theories towards the trade-off hypothesis in order to illustrate the context of the debate. We investigate the arguments raised against the trade-off hypothesis and argue that trade-offs exist, but may not be of the simple form that is usually assumed, involving other mechanisms (and life-history traits) than those originally considered. Many processes such as pathogen adaptation to within-host competition, interactions with the immune system and shifting transmission routes, will all be interrelated making sweeping evolutionary predictions harder to obtain. We argue that this is the heart of the current debate in the field and while species-specific models may be better predictive tools, the trade-off hypothesis and its basic extensions are necessary to assess the qualitative impacts of virulence management strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008.

            Ostreid herpesvirus 1 (OsHV-1) infections have been reported around the world and are associated with high mortalities of the Pacific oyster (Crassostrea gigas). In the summer 2008, abnormal mortality rates ranging from 80% to 100% were reported in France and affected only Pacific oysters. Analyses of oyster samples collected during mortality outbreaks demonstrated a significant detection of OsHV-1 (75% of analysed batches), which appeared stronger than previous years. DNA sequencing based on C and IA regions was carried out on 28 batches of OsHV-1 infected Pacific oysters collected in 2008. Polymorphisms were described in both the C and IA regions and characterized a genotype of OsHV-1 not already reported and termed OsHV-1 microVar. A microsatellite zone present in the C region showed several deletions. Additionally, 44 isolates collected in France and in the USA, from 1995 to 2007 were sequenced and compared to the 2008 sequences. The analyses of 76 sequences showed OsHV-1 microVar detection only in 2008 isolates. These data suggest that OsHV-1 microVar can be assumed as an emergent genotype. (c) 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters

              Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the Ostreid herpesvirus OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                20 May 2021
                May 2021
                : 13
                : 5
                : 946
                Affiliations
                Sydney School of Veterinary Science, The University of Sydney, Camden 2570, Australia; gcai8763@ 123456uni.sydney.edu.au (G.C.); Olivia.Liu@ 123456awe.gov.au (O.L.); richard.whittington@ 123456sydney.edu.au (R.J.W.)
                Author notes
                Article
                viruses-13-00946
                10.3390/v13050946
                8160646
                7181952b-c3ef-422a-a671-812d99d0b4a7
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 12 April 2021
                : 17 May 2021
                Categories
                Article

                Microbiology & Virology
                pacific oyster,crassostrea gigas,ostreid herpesvirus 1,virulence,phenotype
                Microbiology & Virology
                pacific oyster, crassostrea gigas, ostreid herpesvirus 1, virulence, phenotype

                Comments

                Comment on this article