8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intracellular signaling mechanisms of acetaminophen-induced liver cell death.

      Toxicological Sciences
      Acetaminophen, metabolism, toxicity, Analgesics, Non-Narcotic, Apoptosis, Cell Death, drug effects, DNA Fragmentation, Hepatocytes, pathology, Liver, Necrosis, Peroxynitrous Acid, Signal Transduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetaminophen hepatotoxicity is the leading cause of drug-induced liver failure. Despite substantial efforts in the past, the mechanisms of acetaminophen-induced liver cell injury are still incompletely understood. Recent advances suggest that reactive metabolite formation, glutathione depletion, and alkylation of proteins, especially mitochondrial proteins, are critical initiating events for the toxicity. Bcl-2 family members Bax and Bid then form pores in the outer mitochondrial membrane and release intermembrane proteins, e.g., apoptosis-inducing factor (AIF) and endonuclease G, which then translocate to the nucleus and initiate chromatin condensation and DNA fragmentation, respectively. Mitochondrial dysfunction, due to covalent binding, leads to formation of reactive oxygen and peroxynitrite, which trigger the membrane permeability transition and the collapse of the mitochondrial membrane potential. In addition to the diminishing capacity to synthesize ATP, endonuclease G and AIF are further released. Endonuclease G, together with an activated nuclear Ca2+,Mg2+-dependent endonuclease, cause DNA degradation, thereby preventing cell recovery and regeneration. Disruption of the Ca2+ homeostasis also leads to activation of intracellular proteases, e.g., calpains, which can proteolytically cleave structural proteins. Thus, multiple events including massive mitochondrial dysfunction and ATP depletion, extensive DNA fragmentation, and modification of intracellular proteins contribute to the development of oncotic necrotic cell death in the liver after acetaminophen overdose. Based on the recognition of the temporal sequence and interdependency of these mechanisms, it appears most promising to therapeutically target either the initiating event (metabolic activation) or the central propagating event (mitochondrial dysfunction and peroxynitrite formation) to prevent acetaminophen-induced liver cell death.

          Related collections

          Author and article information

          Comments

          Comment on this article