8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Siamese Long Short-Term Memory Architecture for Human Re-Identification

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matching pedestrians across multiple camera views known as human re-identification (re-identification) is a challenging problem in visual surveillance. In the existing works concentrating on feature extraction, representations are formed locally and independent of other regions. We present a novel siamese Long Short-Term Memory (LSTM) architecture that can process image regions sequentially and enhance the discriminative capability of local feature representation by leveraging contextual information. The feedback connections and internal gating mechanism of the LSTM cells enable our model to memorize the spatial dependencies and selectively propagate relevant contextual information through the network. We demonstrate improved performance compared to the baseline algorithm with no LSTM units and promising results compared to state-of-the-art methods on Market-1501, CUHK03 and VIPeR datasets. Visualization of the internal mechanism of LSTM cells shows meaningful patterns can be learned by our method.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

          In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Backpropagation through time: what it does and how to do it

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Deep visual-semantic alignments for generating image descriptions

                Bookmark

                Author and article information

                Journal
                2016-07-28
                Article
                1607.08381
                7193dda8-4caf-44b9-ba0f-3c8d30c52f52

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article