5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Kidney-Specific Microscaffolds and Kidney-Derived Serum-Free Conditioned Media SupportIn VitroExpansion, Differentiation, and Organization of Human Embryonic Stem Cells

      , ,
      Tissue Engineering Part C: Methods
      Mary Ann Liebert Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional cell culture matrices: state of the art.

          Traditional methods of cell growth and manipulation on 2-dimensional (2D) surfaces have been shown to be insufficient for new challenges of cell biology and biochemistry, as well as in pharmaceutical assays. Advances in materials chemistry, materials fabrication and processing technologies, and developmental biology have led to the design of 3D cell culture matrices that better represent the geometry, chemistry, and signaling environment of natural extracellular matrix. In this review, we present the status of state-of-the-art 3D cell-growth techniques and scaffolds and analyze them from the perspective of materials properties, manufacturing, and functionality. Particular emphasis was placed on tissue engineering and in vitro modeling of human organs, where we see exceptionally strong potential for 3D scaffolds and cell-growth methods. We also outline key challenges in this field and most likely directions for future development of 3D cell culture over the period of 5-10 years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regeneration and Experimental Orthotopic Transplantation of a Bioengineered Kidney

            Over 100,000 individuals in the United States currently await kidney transplantation, while 400,000 individuals live with end-stage kidney disease requiring hemodialysis. The creation of a transplantable graft to permanently replace kidney function would address donor organ shortage and the morbidity associated with immunosuppression. Such a bioengineered graft must have the kidney’s architecture and function, and permit perfusion, filtration, secretion, absorption, and drainage of urine. We decellularized rat, porcine, and human kidneys by detergent perfusion, yielding acellular scaffolds with vascular, cortical and medullary architecture, collecting system and ureters. To regenerate functional tissue, we seeded rat kidney scaffolds with epithelial and endothelial cells, then perfused these cell-seeded constructs in a whole organ bioreactor. The resulting grafts produced rudimentary urine in vitro when perfused via their intrinsic vascular bed. When transplanted in orthotopic position in rat, the grafts were perfused by the recipient’s circulation, and produced urine via the ureteral conduit in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche.

              It is widely acknowledged that integrins, the major receptors for the extracellular matrix (ECM) proteins, exert an extensive crosstalk with many growth factor and cytokine receptors. Among them, growth factor receptors, such as the EGFR, MET, PDGFR and VEGFR, and the IL-3 receptor have been shown to be physically and functionally associated to integrins. The connection between integrins and other transmembrane receptors is bidirectional, integrins being essential for receptor signalling, and receptors being involved in regulation of integrin expression or activation. Moreover, there is accumulating evidence for direct binding of specific growth factors and morphogens to the ECM proteins, suggesting that ECM might spatially integrate different types of signals in a specific microenvironment, facilitating integrin/transmembrane receptors connection. These interactions are crucial in controlling a variety of cell behaviours including proliferation, survival and differentiation. The increasing interest for cell therapy in regenerative medicine has recently emphasized the role of cell-ECM adhesion as stem cell determinant. The relevance of ECM, integrins and growth factor receptor network in the establishment of stem cell niche, in maintenance of stem cells and in their differentiation will be analyzed in the present review. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Tissue Engineering Part C: Methods
                Tissue Engineering Part C: Methods
                Mary Ann Liebert Inc
                1937-3384
                1937-3392
                December 2014
                December 2014
                : 20
                : 12
                : 1003-1015
                Article
                10.1089/ten.tec.2013.0574
                71967c62-3b82-4254-8218-0cb50c084154
                © 2014
                History

                Comments

                Comment on this article