+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Features and development of Coot

          1. Introduction Macromolecular model building using X-ray data is an interactive task involving the iterative application of various optimization algorithms with evaluation of the model and interpretation of the electron density by the scientist. Coot is an interactive three-dimensional molecular-modelling program particularly designed for the building and validation of protein structures by facilitating the steps of the process. In recent years, initial construction of the protein chain has often been carried out using automatic model-building tools such as ARP/wARP (Langer et al., 2008 ▶), SOLVE/RESOLVE (Wang et al., 2004 ▶) and more recently Buccaneer (Cowtan, 2006 ▶). In consequence, relatively more time and emphasis is placed on model validation than has previously been the case (Dauter, 2006 ▶). The refinement and validation steps become increasingly important and also more time-consuming with lower resolution data. Coot aims to provide access to as many of the tools required in the iterative refinement and validation of a macromolecular structure as possible in order to facilitate those aspects of the process which cannot be performed automatically. A primary design goal has been to make the software easy to learn in order to provide a low barrier for scientists who are beginning to work with X-ray data. While this goal has not been met for every feature, it has played a major role in many of the design decisions that have shaped the software. The principal tasks of the software are the visualization of macromolecular structures and data, the building of models into electron density and the validation of existing models; these will be considered in the next three sections. The remaining sections of the paper will deal with more technical aspects of the software, including interactions with external software, scripting and testing. 2. Program design The program is constructed from a range of existing software libraries and a purpose-written Coot library which provides a range of tools specific to model building and visualization. The OpenGL and other graphics libraries, such as the X Window System and GTK+, provide the graphical user-interface functionality, the GNU Scientific Library (GSL) provides mathematical tools such as function minimizers and the Clipper (Cowtan, 2003 ▶) and MMDB (Krissinel et al., 2004 ▶) libraries provide crystallographic tools and data types. On top of these tools are the Coot libraries, which are used to manipulate models and maps and to represent them graphically. Much of this functionality may be accessed from the scripting layer (see §8), which allows programmatic access to all of the underlying functionality. Finally, the graphical user interface is built on top of the scripting layer, although in some cases it is more convenient for the graphical user interface to access the underlying classes directly (Fig. 1 ▶). 3. Visualization Coot provides tools for the display of three-dimensional data falling into three classes. (i) Atomic models (generally displayed as vectors connecting bonded atoms). (ii) Electron-density maps (generally contoured using a wire-frame lattice). (iii) Generic graphical objects (including the unit-cell box, noncrystallographic rotation axes and similar). A user interface and a set of controls allow the user to interact with the graphical display, for example in moving or rotating the viewpoint, selecting the data to be displayed and the mode in which those data are presented. The primary objective in the user interface as it stands today has been to make the application easy to learn. Current design of user interfaces emphasizes a number of characteristics for a high-quality graphical user interface (GUI). Such characteristics include learnability, productivity, forgiveness (if a user makes a mistake, it should be easy to recover) and aesthetics (the application should look nice and provide a pleasurable experience). When designing the user interface for Coot, we aim to respect these issues; however, this may not always be achieved and the GUI often undergoes redesign. Ideally, a user who has a basic familiarity with crystallographic data but who has never used Coot before should be able to start the software, display their data and perform some basic manipulations without any instruction. In order for the software to be easy to learn, it is necessary that the core functionality of the software be discoverable, i.e. the user should be able to find out how to perform common tasks without consulting the documentation. This may be achieved in any of three ways. (i) The behaviour is intuitive, i.e. the behaviour of user-interface elements can be either anticipated or determined by a few experiments. An example of this is the rotation of the view, which is accomplished by simply dragging with the mouse. (ii) The behaviour is familiar and consistent, i.e. user-interface elements behave in a similar way to other common software. An example of this is the use of a ‘File’ menu containing ‘Open…’ options, leading to a conventional file-selection dialogue. (iii) The interface is explorable, i.e. if a user needs an additional functionality they can find it rapidly by inspecting the interface. An example of this is the use of organized menus which provide access to the bulk of the program functionality. Furthermore, tooltips are provided for most menus and buttons and informative widgets explain their function. 3.1. User interface The main Coot user interface window is shown in Fig. 2 ▶ and consists of the following elements. (i) In the centre of the main window is the three-dimensional canvas, on which the atomic models, maps and other graphical objects are displayed. By default this area has a black background, although this can be changed if desired. (ii) At the top of the window is a menu bar. This includes the following menus: ‘File’, ‘Edit’, ‘Calculate’, ‘Draw’, ‘Measures’, ‘Validate’, ‘HID’, ‘About’ and ‘Extensions’. The ‘File’, ‘Edit’ and ‘About’ menus fulfill their normal roles. ‘Calculate’ provides access to model-manipulation tools. ‘Draw’ implements display options. ‘Measures’ presents access to geometrical information. ‘Validate’ provides access to validation tools. ‘HID’ allows the human-interface behaviour to be customized. ‘Extensions’ provides access to a range of optional functionalities which may be customized and extended by advanced users. Additional menus can be added by the use of the scripting interface. (iii) Between the menu bar and the canvas is a toolbar which provides two very frequently used controls: ‘Reset view’ switches between views of the molecules and ‘Display Manager’ opens an additional window which allows individual maps and molecules to be displayed in different ways. This toolbar is customizable, i.e. additional buttons can be added. (iv) On the right-hand side of the window is a toolbar of icons which allow the modification of atomic models. By default these are displayed as icons, although tooltips are provided and text can also be displayed. (v) Below the canvas is a status bar in which brief text messages are displayed concerning the status of current operations. The user interface is implemented using the GTK+2 widget stack, although with some work this could be changed in the future. 3.2. Controls User input to the program is primarily via mouse and keyboard, although it is also possible to use some dial devices such as the ‘Powermate’ dial. The mouse may be used to select menu options and toolbar buttons in the normal way. In addition, the mouse and the keyboard may be used to manipulate the view in the three-dimensional canvas using the controls shown in Fig. 3 ▶. In a large program there is often tension between software being easy to learn and being easy to use. A program which is easy to use provides extensive shortcuts to allow common tasks to be performed with the minimum user input. Keyboard shortcuts, customizations and macro languages are common examples and are often employed by expert users of all types of software. Coot now provides tools for all of these. Much of the functionality of the package is now accessible from both the Python ( and the Scheme (Kelsey et al., 1998 ▶) scripting languages, which may be used to construct more powerful tools using combinations of existing functions. One example is a function often used after molecular replace­ment which will step through every residue in a protein, replace any missing atoms, find the best-fitting side-chain rotamer and perform real-space refinement. This function is in turn bound to a menu item, although it would also be possible to bind it to a key on the keyboard. 3.3. Lighting model The lighting model used in Coot is a departure from the approach adopted in most molecular-graphics software. It is difficult to illustrate a three-dimensional shape in a two-dimensional representation of an object. The traditional approach is to use so-called ‘depth-cueing’: objects closer to the user appear more brightly lit and more distant objects are more like the background colour (usually darker). In the Coot model, however, the most brightly lit features are just forward of the centre of rotation. This innovation was accidental, but has been retained because it seemed to provide a more natural image and has generated positive feedback from users once they become accustomed to the new behaviour. It is now possible to offer an explanation for this result. Depth-cueing is an algorithm which adjusts the colours of graphical objects according to their distance from the viewer. Depth-cueing is used in several ways. When rendering outdoor scenes, it is used to wash out the colours of distant features to simulate the effect of light scattering in the intervening air. When rendering darkened scenes, the same effect can be used to darken distant objects in order to create the effect that the viewer is carrying a light source which illuminates nearer objects more brightly than distant ones. Note that both of these usages assume a ‘first-person’ view: the observer is placed within the three-dimensional environment. This is also borne out in the controls for manipulating the view: when the view is rotated, the whole environment usually rotates about the observer. However, fitting three-dimensional atomic models to X-­ray data is a different situation. It is not useful to place the observer inside the model and rotate the model around them, not least because the scientist is usually more interested in looking at the molecule or electron density from the outside. As a result, it is normal to rotate the view not about the observer but rather about the centre of the feature being studied. Since the central feature is of most interest, it helps the visualization if it is the brightest entity. To properly light the model in this way is relatively slow, so in Coot an approximation is used and the plane perpendicular to the viewer that contains the central feature is most brightly lit. 3.4. Atomic model Coot displays the atoms of the atomic models as points on the three-dimensional canvas. If the points are within bonding distance then a line symbolizing a bond is drawn between the atomic points; otherwise the atoms are displayed as crosses. By default the atoms are coloured by element, with carbon yellow, oxygen red, nitrogen blue, sulfur green and hydrogen white. Bonds have two colours, with one half corresponding to each connecting atom. Additional atomic models are distinguished by different colour coding. The colour wheel is rotated and the element colours are adjusted accordingly. However, there is an option to fix the colours for noncarbon elements and the colour-wheel position can be adjusted for each molecule individually. Furthermore, Coot allows the user to colour the atomic model by molecule, chain, secondary structure, B factor and occupancy. Besides showing atomic models, Coot can also display Cα (or backbone) chains only. Again the model can be coloured in different modes, by chain, secondary structure or with rainbow colours from the N-terminus to the C-terminus. Currently, Coot offers some additional atomic representations in the form of different bond-width or ball-and-stick representation for selected residues. Information about individual atoms can be visualized in the form of labels. These show the atom name, residue number, residue name and chain identifier. Labels are shown upon Shift + left mouse click or double left mouse click on an atom (the atom closest to the rotation/screen centre can be labelled using the keyboard shortcut ‘l’). This operation not only shows the label beside the atom in the three-dimensional canvas, but also gives more detailed information about the atom, including occupancy, B factor and coordinates, in the status bar. Symmetry-equivalent atoms of the atomic model can be displayed in Coot within a certain radius either as whole chains or as atoms within this radius. Different options for colouring and displaying atoms or Cα backbone are provided. The symmetry-equivalent models can be labelled as described above. Additionally, the label will provide information about the symmetry operator used to generate the selected model. Navigation around the atomic models is primarily achieved with a GUI (‘Go To Atom…’). This allows the view to be centred on a particular atom by selection of a model, chain ID, residue number and atom name. Buttons to move to the next or previous residue are provided and are also available via keyboard shortcuts (space bar and Shift space bar, respectively). Furthermore, each chain is displayed as an expandable tree of its residues, with atoms that can be selected for centring. Additionally, a mouse can be used for navigation, so a middle mouse click centres on the clicked atom. A keyboard shortcut for the view to be centred on a Cα atom of a specific residue is provided by the use of Ctrl-g followed by input of the chain identifier and residue number (terminated by Enter). All atomic models, in contrast to other display objects, are accessible by clicking a mouse button on an atom centre. This allows, for example, re-centring, selection and labelling of the model. 3.5. Electron density Electron-density maps are displayed using a three-dimensional mesh to visualize the surface of electron-density regions higher than a chosen electron-density value using a ‘marching-cubes’-type algorithm (Lorensen & Cline, 1987 ▶). The spacing of the mesh is dictated by the spacing of the grid on which the electron density is sampled. Since electron-density maps are most often described in terms of structure factors, the sampling can be modified by the user at the point where the electron density is read into the program. The contour level may be varied interactively using the scroll wheel on the mouse (if available) or alternatively by using the keyboard (‘+’ and ‘-’). In most cases this avoids the need for multiple contour levels to be displayed at once, although additional contour levels can be displayed if desired. The colour of the electron-density map may be selected by the user. By default, the first map read into the program is contoured in blue, with subsequent maps taking successive colour hues around a colour wheel. Difference maps are by default contoured at two levels, one positive and one negative (coloured green and red, respectively). The electron density is contoured in a box about the current screen centre and is interactively re-contoured whenever the view centre is changed. By default, this box covers a volume extending at least 10 Å in each direction from the current screen centre. This is an appropriate scale for manipulating individual units of a peptide or nucleotide chain and provides good interactive performance, even on older computers. Larger volumes may be contoured on faster machines. A ‘dynamic volume’ option allows the volume contoured to be varied with the current zoom level, so that the contoured region always fills the screen. A ‘dynamic sampling’ option allows the map to be contoured on a subsampled grid (e.g. every second or fourth point along each axis). This is useful when using a solvent mask to visualize the packing of the molecules in the crystal. 3.6. Display objects There are a variety of non-interactive display objects which can also be superimposed on the atomic model and electron density. These include the boundaries of the unit cell, an electron-density ridge trace (or skeleton), surfaces, three-dimensional text annotations and dots (used in the MolProbity interface). These cannot be selected, but aid in the visualization of features of the electron density and other entities. 3.7. File formats Coot recognizes a variety of file formats from which the atomic model and electron density may be read. The differences in the information stored in these various formats mean that some choices have to be made by the user. This is achieved by providing several options for reading electron density and, where necessary, by requesting additional information from the user. The file formats which may be used for atomic models and for electron density will be considered in turn. In addition to obtaining data from the local storage, it is also possible to obtain atomic models directly from the Protein Data Bank (Bernstein et al., 1977 ▶) by entering the PDB code of a deposited structure. Similarly, in the case of structures for which experimental data have been deposited, the model and phased reflections may both be obtained from the Electron Density Server (Kleywegt et al., 2004 ▶). 3.7.1. Atomic models Atomic models are read into Coot by selecting the ‘Open Coordinates…’ option from the File menu. This provides a standard file selector which may be used to select the desired file. Coot recognizes atomic models stored in the following three formats. (i) Protein Data Bank (PDB) format (with file extension .pdb or .ent; compressed files of this format with extension .gz can also be read). The latest releases provide compatibility with version 3 of the PDB format. (ii) Macromolecular crystallographic information file (mmCIF; Westbrook et al., 2005 ▶) format (extension .cif). (iii) SHELX result files produced by the SHELXL refinement software (extension .res or .ins). In each case, the unit-cell and space-group information are read from the file (in the case of SHELXL output the space group is inferred from the symmetry operators). The atomic model is read, including atom name, alternate conformation code, monomer name, sequence number and insertion code, chain name, coordinates, occupancy and isotropic/anisotropic atomic displacement parameters. PDB and mmCIF files are handled using the MMDB library (Krissinel et al., 2004 ▶), which is also used for internal model manipulations. 3.7.2. Electron density The electron-density representation is a significant element of the design of the software. Coot employs a ‘crystal space’ representation of the electron density, in which the electron density is practically infinite in extent, in accordance with the lattice repeat and cell symmetry of the crystal. Thus, no matter where the viewpoint is located in space density can always be represented. This design decision is achieved by use of the Clipper libraries (Cowtan, 2003 ▶). The alternative approach is to just display electron density in a bounded box described by the input electron-density map. This approach is simpler and may be more appropriate in some specific cases (e.g. when displaying density from cryo-EM experiments or some types of NCS maps). However, it has the limitation that no density is available for symmetry-related molecules and if the initial map has been calculated with the wrong extent then it must be recalculated in order to view the desired regions. This distinction is important in that it affects how electron-density data should be prepared for use in Coot. Files pre­pared for O or PyMOL may not be suitable for use in Coot. In order to read a map file into Coot, it should cover an asymmetric unit or unit cell. In contrast, map files prepared for O (Jones et al., 1991 ▶) or PyMOL (DeLano, 2002 ▶) usually cover a bounded box surrounding the molecule. While it is possible to derive any bounded box from the asymmetric unit, it is not always possible to go the other way; therefore, using map files prepared for other software may lead to unexpected results in some cases, the most common being an incorrect calculation of the standard deviation of the map. If one uses more advanced techniques that involve masking, the electron-density map must have the same symmetry as the associated model molecule. Electron density may be read into Coot either in the form of structure factors (with optional weights) and phases or alternatively in the form of an electron-density map. There are a number of reasons why the preferred approach is to read reflection data rather than a map. (i) Coot can always obtain a complete asymmetric unit of data, avoiding the problems described above. (ii) Structure-factor files are generally smaller than electron-density maps. (iii) Some structure-factor files, and in particular MTZ files, provide multiple sets of data in a single file. Thus, it is possible to read a single file and obtain, for example, both best and difference maps. The overhead in calculating an electron-density map by FFT is insignificant for modern computers. 3.7.3. Reading electron density from a reflection-data file Two options are provided for reading electron density from a reflection-data file. These are ‘Auto Open MTZ…’ and ‘Open MTZ, mmcif, fcf or phs…’ from the ‘File’ menu. (i) ‘Auto Open MTZ…’ will open an MTZ file containing coefficients for the best and difference map, automatically select the FWT/PHWT and the DELFWT/DELPHWT pairs of labels and display both electron-density maps. Currently, suitable files are generated by the following software: Phaser (Storoni et al., 2004 ▶), REFMAC (Murshudov et al., 1997 ▶), phenix.refine (Adams et al., 2002 ▶), DM (Zhang et al., 1997 ▶), Parrot (Cowtan, 2010 ▶), Pirate (Cowtan, 2000 ▶) and BUSTER (Blanc et al., 2004 ▶). (ii) ‘Open MTZ, mmcif, fcf or phs…’ will open a reflection-data file in any of the specified formats. Note that XtalView .phs files do not contain space-group and cell information: in these cases a PDB file must be read first to obtain the relevant information or the information has to be entered manually. MTZ files may contain many sets of map coefficients and so it is necessary to select which map coefficients to use. In this case the user is provided with an additional window which allows the map coefficients to be selected. The standard data names for some common crystallographic software are provided in Table 1 ▶. SHELX .fcf files are converted to mmCIF format and the space group is then inferred from the symmetry operators. 4. Model building Initial building of protein structures from experimental phasing is usually accomplished by automated methods such as ARP/wARP, RESOLVE (Wang et al., 2004 ▶) and Buccaneer (Cowtan, 2006 ▶). However, most of these methods rely on a resolution of better than 2.5 Å and yield more complete models the better the resolution. The main focus in Coot, therefore, is the completion of initial models generated by either molecular replacement or automated model building as well as building of lower resolution structures. However, the features described below are provided for cases where an initial model is not available. 4.1. Tools for general model building 4.1.1. Cα baton mode Baton building, which was introduced by Kleywegt & Jones (1994 ▶), allows a protein main chain to be built by using a 3.8 Å ‘baton’ to position successive Cα atoms at the correct spacing. In Coot, this facility is coupled with an electron-density ridge-trace skeleton (Greer, 1974 ▶). Firstly, a skeleton is calculated which follows the ridges of the electron density. The user then selects baton-building mode, which places an initial baton with one end at the current screen centre. Candidate positions for the next α-carbon are highlighted as crosses selected from those points on the skeleton which lie at the correct distance from the start point. The user can cycle through a list of candidate positions using the ‘Try Another’ button or alternatively rotate the baton freely by use of the mouse. Additionally, the length of the baton can be changed to accommodate moderate shifts in the α-­carbon positions. Once a new position is accepted, the baton moves so that its base is on the new α-carbon. In this way, a chain may be traced manually at a rate of between one and ten residues per minute. 4.1.2. Cα zone→main chain Having placed the Cα atoms, the rest of the main-chain atoms may be generated automatically. This tool uses a set of 62 high-resolution structures as the basis for a library of main-chain fragments. Hexapeptide and pentapeptide fragments are chosen to match the Cα positions of each successive pentapeptide of the Cα trace in turn, following the method of Esnouf (1997 ▶), which is similar to that of Jones & Thirup (1986 ▶). The fragments with the best fit to the candidate Cα positions are merged to provide a full trace. After this step, one typically performs a real-space refinement of the subsequent main-chain model. 4.1.3. Find secondary structure Protein secondary-structure elements, including α-helices and β-strands, can be located by their repeating electron-density features, which lead to high and low electron-density values in characteristic positions relative to the consecutive Cα atoms. The ‘Find Secondary Structure’ tool performs a six-dimensional rotation and translation search to find the likely positions of helical and strand elements within the electron density. This search has been highly optimized in order to achieve interactive performance for moderately sized structures and as a result is less exhaustive than the corresponding tools employed in automated model-building packages: however, it can provide a very rapid indication of map quality and a starting point for model building. 4.1.4. Place helix here At low resolution it is sometimes possible to identify secondary-structure features in the electron density when the Cα positions are not obvious. In this case, Coot can fit an α-helix automatically. This process involves several stages. (i) A local optimization is performed on the starting position to maximize the integral of the electron density over a 5 Å sphere. This tends to move the starting point close to the helix axis. (ii) A search is performed to obtain the direction of the helix by integrating the electron density in a cylinder of radius 2.5 Å and length 12 Å. A two-dimensional orientation search is performed to optimize the orientation of the cylinder. This gives the direction of the helix. (iii) A theoretical α-helical model (including C, Cα, N and O atoms) is placed in the density in accordance with the position and direction already found. Different rotations of the model around the helix axis must be considered. Each of the resulting models is scored by the sum of the density at the atomic centres. At this stage the direction of the helix is unknown and so both directions are tested. (iv) Next, a choice is made between the best-fitting models for each helix direction by comparing the electron density at the Cβ positions. In case neither orientation gives a significant better fit for the Cβ atoms, both helices are presented to the user. (v) Finally, attempts are made to extend the helix from the N- and C-termini using ideal ϕ, ψ values. 4.1.5. Place strand here A similar method is used for placing β-strand fragments in electron density. However, there are three differences compared with helix placement: firstly the initial step is omitted, secondly the length of the fragment (number of residues) needs to be provided by the user and finally the placed fragments are obtained from a database. The first step (optimizing the starting position) is unreliable for strands owing to the smaller radius of the cylinder, i.e. main chain, combined with larger density deviations originating from the side chains. Hence, it is omitted and the user must provide a starting position in this case. The integration cylinder used in determining the orientation of the strand has a radius of 1 Å and a length of 20 Å. The ϕ, ψ torsion angles in β-strands in protein deviate from the ideal values, resulting in curved and twisted strands. Such strands cannot be well modelled using ideal values of ϕ and ψ; therefore, candidate strand fragments corresponding to the requested length are taken from a strand ‘database’ (top100 or top500; Word, Lovell, LaBean et al., 1999 ▶) and used in the search. 4.1.6. Ideal DNA/RNA Coot has a function to generate idealized atomic structures of single or double-stranded A-­form or B-form RNA or DNA given a nucleotide sequence. The function is menu-driven and can produce any desired helical nucleic acid coordinates in PDB format with canonical Watson–Crick base pairing from a given input sequence with the click of a single button. Because most DNA and RNA structures are comprised of at least local regions of regular near-ideal helical structural elements, the ability to generate nucleic acid helical models on the fly is of particular value for molecular replacement. Recently, a collection of short ideal A-form RNA helical fragments generated within Coot were used to solve a structurally complex ligase ribozyme by molecular replacement (Robertson & Scott, 2008 ▶). Using Coot together with the powerful molecular-replacement program Phaser (Storoni et al., 2004 ▶) not only permitted this novel RNA structure to be solved without resort to heavy-atom methods, but several other RNA and RNA/protein complexes were also subsequently determined using this approach (Robertson & Scott, 2007 ▶). Since Coot and Phaser can be scripted using embedded Python components, an automated and integrated phasing system is amenable for development within the current software framework. 4.1.7. Find ligands The automatic fitting of ligands into electron-density maps is a frequently used technique that is particularly useful for pharmaceutical crystallographers (see, for example, Williams et al., 2005 ▶). The mechanism in Coot addresses a number of ligand-fitting scenarios and is a modified form of a previously described algorithm (Oldfield, 2001 ▶). It is common practice in ‘fragment screening’ to soak different ligands into the same crystal (Blundell et al., 2002 ▶). Using Coot one can either specify a region in space or search a whole asymmetric unit for either a single or a number of different ligand types. In the ‘whole-map’ scenario, candidate ligand sites are found by cluster analysis of a residual map. The candidate ligands are fitted in turn to each site (with the candidate orientations being generated by matching the eigenvectors of the ligand to that of the cluster). Each candidate ligand is fitted and scored against the electron density. The best-fitting orientation of the ligand candidates is chosen. Ligands often contain a number of rotatable bonds. To account for this flexibility, Coot samples torsion angles around these rotatable bonds. Here, each rotatable bond is sampled from an independent probability distribution. The number of conformers is under user control and it is recommended that ligands with a higher number of rotatable bonds should be allowed more conformer candidates. Above a certain number of rotatable bonds it is more efficient to use a ‘core + fragment by fragment’ approach (see, for example, Terwilliger et al., 2006 ▶). 4.2. Rebuilding and refinement The rebuilding and refinement tools are the primary means of model manipulation in Coot and are all grouped together in the ‘Model/Fit/Refine’ toolset. These tools may be accessed either through a toolbar (which is usually docked on the right-hand side of the main window) or through a separate ‘Model/Fit/Refine’ window containing buttons for each of the toolbar functions. The core of the rebuilding and refinement tools is the real-space refinement (RSR) engine, which handles the refinement of the atomic model against an electron-density map and the regularization of the atomic model against geometric restraints. Refinement may be invoked both interactively, when executed by the user, and non-interactively as part of some of the automated fitting tools. The refinement and regularization tools are supplemented by a range of additional tools aimed at assisting the fitting of protein chains. These features are discussed below. 4.3. Tools for moving existing atoms 4.3.1. Real-space refine zone The real-space refine tool is the most frequently used tool for the refinement and rebuilding of atomic models and is also incorporated as a final stage in a number of other tools, e.g. ‘Add Terminal Residue…’. In interactive mode, the user selects the RSR button and then two atoms bounding a range of monomers (amino acids or otherwise). Alternatively, a single atom can be selected followed by the ‘A’ key to refine a monomer and its neighbours. All atoms in the selected range of monomers will be refined, including any flanking residues. Atoms of the flanking residues are marked as ‘fixed’ but are required to be added to the refinement so that the geometry (e.g. peptide bonds, angles and planes) between fixed and moving parts is also optimized. The selected atoms are refined against a target consisting of two terms: the first being the atomic number (Z) weighted sum of the electron-density values over all the atomic centres and the second being the stereochemical restraints. The progress of the refinement is shown with a new set of atoms displayed in white/pale colours. When convergence is reached the user is shown a dialogue box with a set of χ2 scores and coloured ‘traffic lights’ indicating the current geometry scores in each of the geometrical criteria (Fig. 4 ▶). Additionally, a warning is issued if the refined range contains any new cis-peptide bonds. At this stage the user may adjust the model by selecting an atom with the mouse and dragging it, whereby the other atoms will move with the dragged atom. Alternatively, a single atom may be dragged by holding the Ctrl key. As soon as the atoms are released, the selected atoms will refine from the dragged position. Optionally, before the start of refinement atoms may be selected to be fixed during the refinement (in addition to the atoms of the flanking residues). 4.3.2. Sphere refinement One of the problems with the refinement mode described above is that it only considers a linear range of residues. This can cause difficulties, with some side chains being inappropriately refined into the electron density of neighbouring residues, particularly at lower resolutions. Additionally, a linear residue selection precludes the refinement of entities such as disulfide bonds. Therefore, a new residue-selection mechanism was introduced to address these issues: the so-called ‘Sphere Refinement’. This mode selects residues that have atoms within a given radius of a specified position (typically within 4 Å of the centre of the screen). The selected residues are matched to the dictionary and any user-defined links (typically from the mon_lib_list.cif in the REFMAC dictionary), e.g. disulfide bonds, glycosidic linkages and formylated lysines. If such links are found and the (supposedly) bonded atoms are within 3 Å of each other then these extra link restraints are added into the refinement. 4.3.3. Ramachandran restraints At lower resolution it is sometimes difficult to obtain an acceptable fit of the model to the density and at the same time achieve a Ramachandran plot of high quality (most residues in favourable regions and less than 1% outliers). If a Ramachandran score is added to the target function then the Ramachandran plot can be improved. The analytical form for torsion gradients (∂θ/∂x 1 and so on) for each of the x, y, z positions of the four atoms contributing to the torsion angle has been reported previously (Emsley & Cowtan, 2004 ▶) (in the case of Ramachandran restraints, the θ torsions will be ϕ and ψ). The extension of the torsion gradients for use as Ramachandran restraints is performed in the following manner. Firstly, two-dimensional log Ramachandran plots R are generated as tables (one for each of the residue types Pro, Gly and non-Pro or Gly). Where the Ramachandran probability becomes zero the log probability becomes infinite and so it is replaced by values which become increasingly negative with distance from the nearest nonzero value. This provides a weak gradient in the disallowed regions towards the nearest allowed region. The log Ramachandran plot provides the following values and derivatives: The derivative of R with respect to the coordinates is required for the addition into the target geometry and is generated as (and so on for each of the x, y, z positions of the atoms in the torsion). Adding a Ramachandran score to the geometry target function is not without consequences. The Ramachandran plot has for a long time been used as a validation criterion, therefore if it is used in geometry optimization it becomes less informative as a validation metric. Kleywegt & Jones (1996 ▶) included the Ramachandran plot in the restraints during refinement using X-PLOR (Brünger, 1992 ▶) and reported that the number of Ramachandran outliers was reduced by about a third using moderate force constants. However, increasing the force constants by over two orders of magnitude only marginally decreased the number of outliers. As a result, Kleywegt and Jones note that the Ramachandran plot retains significant value as a validation tool even when it is also used as a restraint. Using the Ramachandran restraints as implemented in Coot with the default weights, the number of out­liers can be reduced from around 10% to 5% (typical values). 4.3.4. Regularize zone The ‘Regularize Zone’ option functions in the same way as ‘Real-Space Refine Zone’ except that in this case the model is refined with respect to stereochemical restraints but without reference to any electron density. 4.3.5. Rigid-body fit zone The ‘Rigid-Body Fit Zone’ option also follows a similar interface convention to the other refinement options. A range of atoms are selected and the orientation of the selected group is refined to best fit the density. In this case the density is the only contributor to the target function, since the geometry of the fragment is not altered. No constraints are placed on the bonding atoms. If atoms are dragged after refinement, no further refinement is performed on the fragment. 4.3.6. Rotate/translate zone Using this tool, the selected residue selection can be translated and rotated either by dragging it around the screen or through the use of user-interface sliders. No reference to the map is made. The rotation centre can be specified to be either the last atom selected or the centre of mass of the fragment rotated. Additionally, a selection of the whole chain or molecule can be transformed. 4.3.7. Rotamer tools Four tools are available for the fitting of amino-acid side chains. For a side chain whose amino-acid type is already correctly assigned, the best rotamer may be chosen to fit the density either automatically or manually. If the automatic option is chosen then the side-chain rotamer from the MolProbity library (Lovell et al., 2000 ▶) which gives rise to the highest electron-density values at the atomic centres is selected and rigid-body refined (this includes the main-chain atoms of the residues). Otherwise, the user is presented with a list of rotamers for that side-chain type sorted by frequency in the database. The user can then scroll through the list of rotamers using either the keyboard or user-interface buttons to select the desired rotamer. Rotamers are named according to the MolProbity system. Briefly, the χ angles are given letters according to the torsion angle: ‘t’ for approximately 180°, ‘p’ for approximately 60° and ‘m’ for approximately −60° (Lovell et al., 2000 ▶). The other two options (‘Mutate & Auto Fit’ and ‘Simple Mutate’) allow the amino-acid type to be assigned or changed. The ‘Mutate & Auto Fit Rotamer’ option allows an amino-acid type to be selected from a list and then immediately performs the autofit rotamer operation as above. The ‘Simple Mutate’ option changes the amino-acid type and builds the side-chain atoms in the most frequently occurring rotamer without further refinement. 4.3.8. Torsion editing (‘Edit Chi Angles’, ‘Edit Backbone Torsions’, ‘Torsion General’) Coot has different tools for editing the main-chain and side-chain (or ligand) torsion angles. The main-chain torsion angles, namely ϕ and ψ, can be edited using ‘Edit Backbone Torsion…’. With two sliders, the peptide and carbonyl torsion angles can be adjusted. A separate window showing the Ramachandran plot with the two residues forming the altered peptide bond is displayed with the position of the residues updated as the angles change. Side-chain (or ligand) torsion angles must be defined prior to editing. Either the user manually defines the four atoms forming the torsion angle (‘Torsion General’) or the torsion angles are determined automatically and the user selects the one to edit. In the latter case the bond around which the selected torsion angle is edited is visually marked. Using the mouse, the angle can then be rotated freely. 4.3.9. Other protein tools (‘Flip peptide’, ‘Side Chain 180° Flip’, ‘Cis→Trans’) There are three other tools to perform common corrections to protein models. ‘Flip peptide’ rotates the planar atoms in a peptide group through 180° about the vector joining the bounding Cα atoms (Jones et al., 1991 ▶). ‘Side Chain 180° Flip’ rotates the last torsion of a side chain through 180° (e.g. to swap the OD1 and ND2 side-chain atoms of Asn). ‘Cis→Trans’ shifts the torsion of the peptide bond through 180°, thereby changing the peptide bond from trans to cis and vice versa. 4.4. Tools for adding atoms to the model 4.4.1. Find waters The water-finding mechanism in Coot uses the same cluster analysis as is used in ligand fitting. However, only those clusters below a certain volume (by default 4.2 Å3) are considered as candidate sites for water molecules. The centre of each cluster is computed and a distance check is then made to the potential hydrogen-bond donors or receptors in the protein molecule (or other waters). The distance criteria for acceptable hydrogen-bond length are under user control. Additionally, a test for acceptable sphericity of the electron density is performed. 4.4.2. Add terminal residue The MolProbity ϕ, ψ distribution is used to generate a set of randomly selected ϕ, ψ pairs. To build additional residues at the N- and C-termini of protein chains, the MolProbity ϕ, ψ distribution is used to generate a set of positions of the N, Cα, O and C atoms of the next two residues. The conformation of these new atoms is then scored against the electron-density map and recorded. This procedure is carried out a number of times (by default 100). The best-fitting conformation is offered as a candidate to the user (only the nearest of the two residues is kept). 4.4.3. Add alternate conformation Alternate conformations are generated by splitting the residue into two sets of conformations (A and B). By default all atoms of the residue are split, or alternatively only the Cα and side-chain atoms are divided. If the residue chosen is a standard protein residue then the rotamer-selection dialogue described above is also shown, along with a slider to specify the occupancy of the new conformation. 4.4.4. Place atom at pointer This is a simple interface to place a typed atom at the position of the centre of the screen. It can place additional water or solvent molecules in un­modelled electron-density peaks and is used in conjunction with the ‘Find blobs’ tool, which allows the largest unmodelled peaks to be visited in turn. 4.5. Tools for handling noncrystallographic symmetry (NCS) Noncrystallographic symmetry (NCS) can be exploited during the building of an atomic model and also in the analysis of an existing model. Coot provides five tools to help with the building and visualization of NCS-related molecules. (i) NCS ghost molecules. In order to visualize the simi­larities and differences between NCS-related molecules, a ‘ghost’ copy of any or all NCS-related chains may be superimposed over a specific chain in the model. The ‘ghost’ copies are displayed in thin lines and coloured differently, as well as uniformly, in order to distinguish them from the original. The superposition may be performed automatically by secondary-structure matching (Krissinel & Henrick, 2004 ▶) or by least-squares superposition. An example of an NCS ghost molecule is shown in Fig. 5 ▶. (ii) NCS maps. The electron density of NCS-related molecules can be superimposed in order to allow differences in the electron density to be visualized. This is achieved by transforming the coordinates of the three-dimensional contour mesh, rather then the electron density itself, in order to provide good interactive performance. The operators are usually determined with reference to an existing atomic model which obeys the same NCS relationships. An example of an NCS map is shown in Fig. 6 ▶. (iii) NCS-averaged maps. In addition to viewing NCS-related copies of the electron density, the average density of the related regions may be computed and viewed. In noisy maps this can provide a clearer starting point for model building. (iv) NCS rebuilding. When building an atomic model of a molecule with NCS, it is often more convenient to work on one chain and then replicate the changes made in every NCS-related copy of that chain (at least in the early stages of model building). This can be achieved by selecting two related chains and replacing the second chain in its entirety, or in a specific residue range, with an NCS-transformed copy of the first chain. (v) NCS ‘jumping’. The view centre jumps to the next NCS-related peer chain and at the same time the NCS operators are taken into account so that the relative view remains the same. This provides a means for rapid visual comparison of NCS-related entities. 5. Validation Coot incorporates a range of validation tools from the com­parison of a model against electron density to comprehensive geometrical checks for protein structures and additional tools specific to nucleotides. It also provides convenient interfaces to external validation tools: most notably the MolProbity suite (Davis et al., 2007 ▶), but also to the REFMAC refinement software (Murshudov et al., 1997 ▶) and dictionary (Vagin et al., 2004 ▶). Many of the internal validation tools provide a uniform interface in the form of colour-coded bar charts, for example the ‘Density Fit Analysis’ chart (Fig. 7 ▶). This window contains one bar chart for each chain in the structure. Each chart contains one bar for each residue in the chain. The height and colour of the bar indicate the model quality of the residue, with small green bars indicating a good or expected/conventional conformation and large red bars indicating poor-quality or ‘unconventional’ residues. The chart is active, i.e. on moving the pointer over the bar tooltips provide relevant statistics and clicking on a bar changes the view in the main graphics window to centre on the selected residue. In this way, a rapid overview of model quality is obtained and problem areas can be investigated. In order to obtain a good structure for sub­mission, the user may simply cycle though the validation options, correcting any problems found. The available validation tools are described in more detail in the following sections. 5.1. Ramachandran plot The Ramachandran plot tool (Fig. 8 ▶) launches a new window in which the Ramachandran plot for the active molecule is displayed. A data point appears in this plot for each residue in the protein, with different symbols distinguishing Gly and Pro residues. The background of the plot shows frequency data for Ramachandran angles using the Richardsons’ data (Lovell et al., 2003 ▶). The plot is interactive: clicking on a data point moves the view in the three-dimensional canvas to centre on the corresponding residue. Similarly, selecting an atom in the model highlights the corresponding data point. Moving the mouse over a data point corresponding to a Gly or Pro residue causes the Ramachandran frequency data for that residue type to be displayed. 5.2. Kleywegt plot The Kleywegt plot (Kleywegt, 1996 ▶; Fig. 9 ▶) is a variation of the Ramachandran plot that is used to highlight NCS differences between two chains. The Ramachandran plot for two chains of the protein is displayed, with the data points of NCS-related residues in the two chains linked by a line for the top 50 (default) most different ϕ, ψ angles. Long lines in the corresponding figure correspond to significant differences in backbone conformation between the NCS-related chains. 5.3. Incorrect chiral volumes Dictionary definitions of monomers can contain descriptions of chiral centres. The chiral centres are described as ‘positive’, ‘negative’ or ‘both’. Coot can compare the residues in the protein structure to the dictionary and identify outliers. 5.4. Unmodelled blobs The ‘Unmodelled Blobs’ tool finds candidate ligand-binding sites (as described above) without trying to fit a specific ligand. 5.5. Difference-map peaks Difference maps can be searched for positive and negative peaks. The peak list is then sorted on peak height and filtered by proximity to higher peaks (i.e. only peaks that are not close to previous peaks are identified). 5.6. Check/delete waters Waters can be validated using several criteria, including distance from hydrogen-bond donors or acceptors, temperature factor or electron-density level. Waters that do not pass these criteria are identified and presented as a list or automatically deleted. 5.7. Check waters by difference map variance This tool is used to identify waters that have been placed in density that should be assigned to other atoms or molecules. The difference map at each water position is analysed by generating 20 points on each sphere at radii of 0.5, 1.0 and 1.5 Å and the electron-density level at each of these points is found by cubic interpolation. The mean and variance of the density levels is calculated for each set of points. If, for example, a water was misplaced into the density for a glycerol then (given an isotropic density model for the water molecule) the difference map will be anisotropic because there will be unaccounted-for positive density along the bonds to the other atoms in the glycerol. There may also be some negative density in a perpendicular direction as the refinement program tries to compensate for the additional electron density. The variances are summed and compared with a reference value (by default 0.12 e2 Å−6). Note that it only makes sense to run this test on a difference map generated by reciprocal-space refinement (for example, from REFMAC or phenix.refine) that included temperature-factor refinement. 5.8. Geometry analysis The geometry (bonds, angles, planes) for each residue in the selected molecule is compared with dictionary values (typically provided by the mmCIF REFMAC dictionary). Torsion-angle deviations are not analysed (as there are other validation tools for these; see §5.9). The statistic displayed in the geometry graph is the average Z value for each of the geometry terms for that residue (peptide-geometry distortion is shared between neighbouring residues). The tooltip on the geometry graph describes the geometry features giving rise to the highest Z value. 5.9. Peptide ω analysis This is a validation tool for the analysis of peptide ω torsion angles. It produces a graph marking the deviation from 180° of the peptide ω angle. The deviation is assigned to the residue that contains the C and O atoms of the peptide link, thus peptide ω angles of 90° are very poor. Optionally, ω angles of 0° can be considered ideal (for the case of intentional cis-peptide bonds). 5.10. Temperature-factor variance analysis The variance of the temperature factors for the atoms of each residue is plotted. This is occasionally useful to highlight misbuilt regions. In a badly fitting residue, reciprocal-space refinement will tend to expand the temperatures factors of atoms in low or negative density, resulting in a high variance. However, residues with long side chains (e.g. Arg or Lys) often naturally have substantial variance, even though the atoms are correctly placed, which causes ‘noise’ in this graph. This shortcoming will be addressed in future developments. H atoms are ignored in temperature-factor variance analysis. 5.11. Gln and Asn B-factor outliers This is another tool that analyses the results of reciprocal-space refinement. A measure z is computed that is half of the difference of the temperature factor between the NE2 and OE1 atoms (in the case of Gln) divided by the standard deviation of the temperature factors of the remaining atoms in the residue. Our analysis of high-resolution structures has shown that when z is greater than +2.25 there is a more than 90% chance that OE1 and NE2 need to be flipped (P. Emsley, unpublished results). 5.12. Rotamer analysis The rotamer statistics are generated from an analysis of the nearest conformation in the MolProbity rotamer probability distribution (Lovell et al., 2000 ▶) and displayed as a bar chart. The height of the bar in the graph is inversely proportional to the rotamer probability. 5.13. Density-fit analysis The bars in the density-fit graphs are inversely proportional to the average Z-weighted electron density at the atom centres and to the grid sampling of the map (i.e. maps with coarser grid sampling will have lower bars than a more finely gridded map, all other things being equal). Accounting for the grid sampling allows lower resolution maps to have an informative density-fit graph without many or most residues being marked as worrisome owing to their atoms being in generally low levels of density. 5.14. Probe clashes ‘Probe Clashes’ is a graphical representation of the output of the MolProbity tools Reduce (Word, Lovell, Richardson et al., 1999 ▶), which adds H atoms to a model (and thereby provides a means of analyzing potential side-chain flips), and Probe (Word, Lovell, LaBean et al., 1999 ▶), which analyses atomic packing. ‘Contact dots’ are generated by Probe and these are displayed in Coot and coloured by the type of interaction. 5.15. NCS differences The graph of noncrystallographic symmetry differences shows the r.m.s. deviation of atoms in residues after the transformation of the selected chain to the reference chain has been applied. This is useful to highlight residues that have unusually large differences in atom positions (the largest differences are typically found in the side-chain atoms). 6. Model analysis 6.1. Geometric measurements Geometric measurements can be performed on the model and displayed in a three-dimensional view using options from the ‘Measures’ menu. These measurements include bond lengths, bond angles and torsion angles, which may be selected by clicking successively on the atoms concerned. It is also possible to measure the distance of an atom to a least-squares plane defined by a set of three or more other atoms. The ‘Environment Distances’ option allows all neighbours within a certain distance of any atom of a chosen residue to be displayed. Distances between polar neighbours are coloured differently to all others. This is particularly useful in the initial analysis of hydrogen bonding. 6.2. Superpositions It is often useful to compare several related molecules which are similar in terms of sequence or fold. In order to do this the molecules must be placed in the same position and orientation in space so that the differences may be clearly seen. Two tools are provided for this purpose. (i) SSM superposition (Krissinel & Henrick, 2004 ▶). Secondary Structure Matching (SSM) is a tool for superposing proteins whose fold is related by fitting the secondary-structure elements of one protein to those of the other. This approach is automatic and does not rely on any sequence identity between the two proteins. The superposition may include a complete structure or just a single chain. (ii) LSQ superposition. Least-squares (LSQ) superposition involves finding the rotation and translation which minimizes the distances between corresponding atoms in the two models and therefore depends on having a predefined correspondence between the atoms of the two structures. This approach is very fast but requires that a residue range from one structure be specified and matched to a corresponding residue range in the other structure. 7. Interaction with other programs In addition to the built-in tools, e.g. for refinement and validation, Coot provides interfaces to external programs. For refinement, interfaces to REFMAC and SHELXL are pro­vided. Validation can be accomplished by interaction with the programs Probe and Reduce from the MolProbity suite. Furthermore, interfaces for the production of publication-quality figures are provided by communication with the (molecular) graphics programs CCP4mg, POV-Ray and Raster3D. 7.1. REFMAC  Coot provides a dialogue similar to that used in CCP4i for running REFMAC (Murshudov et al., 2004 ▶). REFMAC is a program from the CCP4 suite for maximum-likelihood-based macromolecular refinement. Once a round of interactive model building has finished, the user can choose to use REFMAC to refine the current model. Reflections for the refinement are either used from the MTZ file from which the currently displayed map was calculated or can be acquired from a selected MTZ file. Most REFMAC parameters are set as defaults; however, some can be specified in the GUI, such as the number of refinement cycles, twin refinement and the use of NCS. Once REFMAC has terminated, the newly generated (refined) model and MTZ file from which maps are generated are automatically read in (and displayed). If REFMAC detected geometrical outliers at the end of the refinement, an interactive dialogue will be presented with two buttons for each residue containing an outlier: one to centre the view on the residue and the other to carry out real-space refinement. 7.2. SHELXL  For high-resolution refinement, SHELXL can be used directly from Coot. A new SHELXL.ins file can be generated from a SHELXL.res file including any manipulations or additions to the model. Additional parameters may be added to the file or it can be edited in a GUI. Once refinement in SHELXL is finished, the refined coordinate file is read in and displayed. The resulting reflections file (.fcf) is converted into an mmCIF file, after which it is read in and the electron density is displayed. An interactive dialogue of geometric out­liers (disagreeable restraints and other problems discovered by SHELXL) can be displayed by parsing the .lst output file from SHELXL. 7.3. MolProbity  Coot interacts with programs and data from the Mol­Probity suite in a number of ways, some of which have already been described. In addition, MolProbity can provide Coot with a list of possible structural problems that need to be addressed in the form of a ‘to-do chart’ in either Python or Scheme format; this can be read into Coot (‘Calculate’→‘Scripting…’). 7.4. CCP4mg  Coot can write CCP4mg picture-definition files (Potterton et al., 2004 ▶). These files are human-readable and editable and define the scene displayed by CCP4mg. Currently, the view and all displayed coordinate models and maps are described in the Coot-generated definition file. Hence, the displayed scene in Coot when saving the file is identical to that in CCP4mg after reading the picture-definition file. For convenience, a button is provided which will automatically produce the picture-definition file and open it in CCP4mg. 7.5. Raster3D/POV-Ray  Raster3D (Merritt & Bacon, 1997 ▶) and POV-Ray (Persistence of Vision Pty Ltd, 2004 ▶) are commonly used programs for the production of publication-quality figures in macromolecular crystallography. Coot writes input files for both of these programs to display the current view. These can then be rendered and ray-traced by the external programs either externally or directly within Coot using ‘default’ parameters. The resulting images display molecular models in ball-and-stick representation and electron densities as wire frames. 8. Scripting Most internal functions in Coot are accessible via a SWIG (Simplified Wrapper and Interface Generator) interface to the scripting languages Python ( and Guile (a Scheme interpreter; Kelsey et al., 1998 ▶; Via the same interface, some of Coot’s graphics widgets are available to the scripting layer (e.g. the main menu bar and the main toolbar). The availability of two scripting interfaces allows greater flexibility for the user as well as facilitating the interaction of Coot with other applications. In addition to the availability of Coot’s internal functions, the scripting interface is enriched by a number of provided scripts (usually available in both scripting languages). Some of these scripts use GUIs, either through use of the Coot graphics widgets or via the GTK+2 extensions of the scripting lan­guages. A number of available scripts and functions are made available in an extra ‘Extensions’ menu. Scripting not only provides the user with the possibility of running internal Coot functions and scripts but also that of reading and writing their own scripts and customizing the menus. 9. Building and testing When Coot was made available to the public, three initial considerations were that it should be cross-platform, robust and easy to install. These considerations continue to be a challenge. To assist in meeting them, an automated scheduled build-and-test system has been developed, thus enabling almost constant deployment of the pre-release software. The subversion version-control system ( is used to manage source-code revisions. An ‘integration machine’ checks out the latest source code several times per hour, compiles the software and makes a source-code tar file. Less frequently, a heterogeneous array of build machines copies the source tar file and compiles it for the host architecture. After a successful build, the software is run against a test suite and only if the tests are passed is the software bundled and made available for download from the web site. All the build and test logs are made available on the Coot web site. Fortunately, users of the pre-release code seem to report problems without undue exasperation. It is the aim of the developers to respond rapidly to such reports. 9.1. Computer operating-system compatibility Coot is released under the GNU General Public License (GPL) and depends upon many other GPL and open-source software components. Coot’s GUI and graphical display are based on rather standard infrastructure, including the X11 windowing system, OpenGL and associated software such as the cross-platform GTK+2 stack derived from the GIMP project. In addition, Coot depends upon open-source crystallographic software components including the Clipper libraries (Cowtan, 2003 ▶), the MMDB library (Krissinel et al., 2004 ▶), the SSM library (Krissinel & Henrick, 2004 ▶) and the CCP4 libraries. In principle, Coot and its dependencies can be in­stalled on any modern GNU/Linux or Unix platform without fanfare. A Windows-based version of Coot is also available. 9.2. Coot on GNU/Linux Compiling and installing Coot on the GNU/Linux operating system is probably the most straightforward option. GNU/Linux is in essence a free software/open-source collaborative implementation of the Unix operating system that is compatible with most computer hardware. Coot’s infrastructural dependencies, such as GTK+2 and other GNU libraries, as well as all of its crystallographic software dependencies, were selected with portability in mind. Most of the required dependencies are either installed with the GNOME desktop or are readily available for installation via the package-management systems specific to each distribution. It is possible that in future Coot (along with all its dependencies) will be made available via the official package-distribution systems for several of the major GNU/Linux distributions. When an end-user chooses to install the Coot package, all of Coot’s required dependencies will be installed along with it in a simple and painless procedure. An official Coot package currently exists in the Gentoo distribution (maintained by Donnie Berkholz), a Fedora package (maintained by Tim Fenn) is under development at the time of writing and unofficial Debian and rpm Coot packages are also available. Binary Coot releases for the most popular GNU/Linux platforms are available from the Coot website: Additional information on installing Coot on GNU/Linux, either as a pre-compiled binary or from source code, is available on the Coot wiki: 9.3. Coot on Apple’s Mac OS X With the release of Apple’s Mac OS X, a Unix-based operating system, it became possible to use most if not all of the standard crystallographic software on Apple computers. OS X does not natively use the X11 windowing system, but rather a proprietary windowing technology called Quartz. This system has some benefits over X11, but does not support X11-based Unix software. However, the X11 windowing system can be run within OS X (in rootless mode) and as of OS X version 10.5 this has become a default option and operates in a reasonably seamless manner. Unlike GNU/Linux, Apple does not provide the X11-based dependencies (GTK+2, GNOME libraries) and many of the other open-source components required to install and run Coot. However, third-party package-management systems have appeared to fill this gap, having made it their mission to port essentially all of the most important software that is freely available to users of other Unix-based systems to OS X. The two most popular package-management systems are Fink and MacPorts. Of these, Fink makes available a larger collection of software that is of use to scientists, including a substantial collection of crystallographic software. For that reason, Fink has been adopted as the preferred option for installing Coot on Mac OS X. Fink uses many of the same software tools as the Debian GNU/Linux package-management system and provides a convenient front-end. In practice, this requires the end user to do three things in preparation for installing Coot under OS X. (i) Install Apple’s X-code Developer tools. This is a free gigabyte-sized download available from Apple. (ii) Install the very latest version of X11. This is crucial, as many bug fixes are required to run Coot. (iii) Install the third-party package-management system Fink and enable the ‘unstable’ software tree to obtain access to the latest software. Coot may then be installed through Fink with the command fink install coot. 9.4. Coot on Microsoft Windows Since Microsoft Windows operating systems are the most widely used computer platform, a Coot version which runs on Microsoft Windows has been made available (WinCoot). All of Coot’s dependencies compile readily on Windows systems (although some require small adjustments) or are available as GPL/open-source binary downloads. The availability of GTK+2 (dynamically linked) libraries (DLLs) for Windows makes it possible to compile Coot without the requirement of the X11 windowing system, which would depend on an emulation layer (e.g. Cygwin). Some minor adjustments to Coot itself were necessary owing to differences in operating-system architecture, e.g. the filesystem (Lohkamp et al., 2005 ▶). Currently WinCoot, by default, only uses Python as a scripting language since the Guile GTK+2 extension module is not seen as robust enough on Windows. WinCoot binaries are, as for GNU/Linux systems, automatically built and tested on a regular basis. The program is executed using a batch script and has been shown to work on Windows 98, NT, 2000, XP and Vista. WinCoot binaries (stable as well as pre-releases) are available as a self-extracting file from 10. Discussion Coot tries to combine modern methods in macromolecular model building and validation with concerns about a modern GUI application such as ease of use, productivity, aesthetics and forgiveness. This is an ongoing process and although improvements can still be made, we believe that Coot has an easy-to-learn intuitive GUI combined with a high level of crystallographic awareness, providing useful tools for the novice and experienced alike. However, Coot has a number of limitations: NCS-averaged maps are poorly implemented, being meaningful only over a limited part of the unit cell (or crystal). There is also a mis­match in symmetry when using maps from cryo-EM data (Coot incorrectly applies crystal symmetry to EM maps). Coot is not at all easy to compile, having many dependencies: this is a problem for developers and advanced users. 10.1. Future Coot is under constant development. New features and bug fixes are added on an almost daily basis. It is anticipated that further tools will be added for validation, nucleotide and carbohydrate model building, as well as for refinement. Interactive model building will be enhanced by communication with the CCP4 database, use of annotations and an interactive notebook and by adding annotation representation into the validation graphs. The embedded scripting languages provide the potential for sophisticated communication with model-building tools such as Buccaneer, ARP/wARP and PHENIX; in future this may be extended to include density modification as well. In the longer term tools to handle EM maps are planned, including the possibility of building and refining models. The appropriate data structures are already implemented in the Clipper libraries but are not yet available in Coot. The integration of validation tools will be expanded, especially with respect to MolProbity, and an interface to the WHAT_CHECK validation program (Hooft et al., 1996 ▶) will be added. WHAT_CHECK provides machine-readable output and this can be read by Coot to provide both an interactive description and navigation as well as (requiring more work) a mode to automatically fix up problematic geometry. Note added in proof: Ian Tickle has noted a potential problem with the calculation of χ2 values resulting from real-space refinement. Coot will be reworked to instead represent the r.m.s. deviation from ideality of each of the geometrical terms.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Overview of the CCP4 suite and current developments

            1. Introduction CCP4 (Collaborative Computational Project, Number 4, 1994 ▶) exists to produce and support a world-leading integrated suite of programs that allows researchers to determine macromolecular structures by X-ray crystallography and other bio­physical techniques. CCP4 aims to develop and support the development of cutting-edge approaches to the experimental determination and analysis of protein structure and to integrate these approaches into the CCP4 software suite. CCP4 is a community-based resource that supports the widest possible researcher community, embracing academic, not-for-profit and for-profit research. CCP4 aims to play a key role in the education and training of scientists in experimental structural biology. It encourages the wide dissemination of new ideas, techniques and practice. In this article, we give an overview of the CCP4 project, past, present and future. We begin with a historical perspective on the growth of the software suite, followed by a summary of the current functionality in the suite. We then discuss ongoing plans for the next generation of the suite which is in development. In this account we focus on the suite as a whole, while other articles in this issue delve deeper into individual programs. We intend that this article could serve as a general literature citation for the use of the CCP4 software suite in structure determination, although we also encourage the citation of individual programs, many of the relevant references for which are included here. While we focus here on the CCP4 software suite, we would emphasize that comparable functionality is available in other software packages such as SHARP/autoSHARP (Vonrhein et al., 2007 ▶), SHELX (Sheldrick, 2008 ▶), ARP/wARP (Langer et al., 2008 ▶), PHENIX (Adams et al., 2010 ▶) and many others. 2. Evolution of the CCP4 software suite The CCP4 software suite is a collection of programs implementing specific algorithms concerned with macromolecular structure solution from X-ray diffraction data. Significantly, it is a collection of autonomous and independently developed programs. While some have been commissioned by the academic committees overseeing the CCP4 project, the majority originate from the community to address a perceived gap in current functionality or to implement newly developed algorithms. The result is a collection of around 200 programs, ranging from large programs which are effectively packages in themselves to small ‘jiffy’ programs. Over the years the suite has grown continuously, with each major release featuring significant new software (see Table 1 ▶). Unsurprisingly, there is overlap of functionality, with several programs performing a particular task, albeit often using different approaches. The question then is how to combine these programs into a software suite, both in terms of ensuring communication between the different programs and in helping both naïve and experienced users to navigate through the suite. Early on in the history of CCP4, there was an agreement for all programs to use the same file formats for data files. Formats were specified for diffraction data (the LCF format, later replaced by the MTZ format) and for electron-density maps (the CCP4 map format), while for atomic coordinates the PDB format was adopted. A software library was developed to facilitate reading and writing of these data formats and thereby ensure standardization of the formats. Originally supporting only Fortran programs, the library was re-written to support both Fortran and C/C++ as well as scripting languages (Winn et al., 2002 ▶). The CCP4 set of libraries has since expanded to cover a wider range of crystallographic tasks, in particular with the addition of the Clipper library (Cowtan, 2003 ▶), the MMDB library (Krissinel et al., 2004 ▶) and the CCTBX library (Grosse-Kunstleve et al., 2002 ▶) from the PHENIX project (Adams et al., 2010 ▶). Crystallographic tasks were performed by writing or adapting scripts (e.g. Unix shell or VMS scripts) to link together a number of programs (Fig. 1a ▶) and the suite can still be run in this way. The programs communicate solely via the data files which are passed between them. The user sets program options based on the program documentation and the expected results from earlier steps. A major change was introduced in 2000 with the release of the graphical user interface ccp4i (Fig. 1b ▶; Potterton et al., 2003 ▶). Task interfaces help the user to prepare run scripts. Details of how to run specific programs are largely hidden, as are the jiffy programs used to perform minor functions such as format conversion. Some limited intelligence in the interface code allows program options to be customized according to properties of the data and/or the desired objective. ccp4i interfaces are now available for all of the commonly used CCP4 programs as well as for several non-CCP4 programs (e.g. ARP/wARP; Langer et al., 2008 ▶). The ccp4i interface also introduced for the first time tools for helping the user to organize data. Jobs that have been run were recorded in a ‘database’ (in reality a directory of files) with tools to access and interpret the files saved there. Jobs are further organized into projects, representing different structure solutions. There are now plans to update the CCP4 GUI (see §4), but the impact of the original ccp4i on the suite should not be underestimated. In the last few years, two other modes of accessing the CCP4 suite have emerged. On the one hand, the latest version of the suite contains four complementary automation pipelines, namely xia2 (Winter, 2010 ▶), CRANK (Ness et al., 2004 ▶), MrBUMP (Keegan & Winn, 2007 ▶) and BALBES (Long et al., 2008 ▶). These pipelines attempt to perform large sections of the full structure solution (e.g. phasing) without user intervention. This is achieved partly through the use of a large number of trials, trying different protocols and performing parameter scanning. Such an approach can be very powerful, using cheap computer power to make many more attempts than a user would manually. Automation pipelines have been realised in the last few years because of the maturity of the underlying programs and the availability of sufficient computer power to support multiple trials. On the other hand, graphical programs for interactive use have become more powerful. Rather than simply reviewing the results of previously run programs and performing interactive model editing, Coot (Emsley et al., 2010 ▶) can launch separate refinement and validation programs (Fig. 1c ▶). Similarly, iMOSFLM can be used to interface the data-processing programs POINTLESS and SCALA. In some ways this is a completely different scenario to the automation pipelines. User interaction is paramount, with crystallo­graphy programs acting as tools to be invoked. The user can become familiar with the data and structure and use this to make intelligent decisions. Such an approach has also become possible because of the maturity of the invoked programs and the availability of sufficient computer power to run the programs interactively. 3. Overview of current functionality In this section, we give an overview of the current functionality of the CCP4 software suite (corresponding to release series 6.1 at the time of writing). We summarize the automation pipelines and individual programs included in the suite; many more details can be found in the accompanying articles in this issue. We present the functionality in the traditional manner, starting at data processing and ending at validation. However, it is becoming increasingly apparent that these neat categories are breaking down. 3.1. Data processing The earliest starting point for entry into the CCP4 suite is a set of X-ray diffraction images. The data-reduction program MOSFLM (Leslie, 2006 ▶) will take a set of diffraction images, identify spots on each image, index the diffraction pattern and thus identify the Bragg peaks, and integrate the spots. The output is a list of integrated intensities and their standard uncertainties labelled by the h, k, l indices. Associated information includes the batch number of the image from which the intensity was obtained, whether the peak was full or partial and the symmetry operation that relates the particular observation to the chosen asymmetric unit. MOSFLM continues to be improved, with support added recently for Pilatus detectors, addition of automatic backstop masking etc. The most visible change is the replacement of the old X-­windows-based interface with the Tcl-based iMOSFLM interface (Fig. 2 ▶), which guides the user in a stepwise manner through the stages of data processing. POINTLESS is a relatively new program whose primary purpose is to identify the Laue group of a crystal from an unmerged data set (Evans, 2006 ▶). The program will also attempt to identify the space group from an analysis of systematic absences. A secondary purpose is to test the choice of indexing and re-index a data set if necessary. Given a choice of space group, the program SCALA (Evans, 2006 ▶) will refine the parameters of a scaling function for an unmerged data set, apply scales to each observation of a reflection and merge all observations of a reflection to give an average intensity. It will also provide an improved estimate of the standard uncertainty of each intensity. The new program CTRUNCATE (which replaces the older TRUNCATE; Stein, unpublished program) can then convert the intensities to structure-factor amplitudes, although downstream programs increasingly use the mean intensities directly. Perhaps more importantly, CTRUNCATE will analyse a data set for signs of twinning, translational noncrystallographic symmetry (NCS), anisotropy and other notable features, since it is best to identify problems before attempting phasing. The program SFCHECK (Vaguine et al., 1999 ▶) will also provide an analysis of a data set, including testing for twinning and translational NCS, estimating the optical resolution and the anisotropy, and plotting the radial and angular completeness. The previous steps of data processing are automated by the xia2 pipeline (Winter, 2010 ▶). From a directory of images, xia2 will identify the type of experiment (multi-wedge, multi-pass, multi-wavelength) and process accordingly. The pipeline will determine the point group, space group and correct indexing. Multiple processing pipelines using alternative underlying programs are supported. At the end, the user should have a set of merged structure-factor amplitudes suitable for input to phasing. 3.2. Experimental phasing CCP4 includes the CRANK pipeline (Ness et al., 2004 ▶), which covers experimental phasing and beyond, and interfaces with several CCP4 and non-CCP4 programs. Heavy-atom sub­structure detection is performed by AFRO/CRUNCH2 (de Graaff et al., 2001 ▶) or by SHELXC/D (Sheldrick, 2008 ▶) and initial phasing is carried out by BP3 (Pannu et al., 2003 ▶; Pannu & Read, 2004 ▶) or SHELXE (Sheldrick, 2008 ▶). Phase improvement is carried out by SOLOMON (Abrahams & Leslie, 1996 ▶), DM (Cowtan et al., 2001 ▶) or Pirate (Cowtan, 2000 ▶) and automated model building by Buccaneer (Cowtan, 2006 ▶; Cowtan, 2008 ▶) or ARP/wARP (Langer et al., 2008 ▶). CRANK thus supports a range of underlying software handling the communication of data and allowing the user to trial different combinations. CCP4 includes a number of additional individual programs, each of which has its own particular strength. The long-standing CCP4 program MLPHARE for phasing still works in straight­forward cases and is fast to use. ACORN (Jia-xing et al., 2005 ▶; Dodson & Woolfson, 2009 ▶) uses ab initio methods for the determination of phases starting from a small fragment which could be a single heavy atom. The use of ab initio methods usually requires atomic resolution data, since it assumes atomicity of the electron density. However, a variant of the so-called free-­lunch algorithm (Jia-xing et al., 2005 ▶) allows the temporary generation of phases to atomic resolution which the ACORN method can utilize. The OASIS program (Wu et al., 2009 ▶) also uses ab initio methods to break the phase ambiguity in SAD/SIR phasing. Phaser (McCoy et al., 2007 ▶) can obtain phase estimates starting from known heavy-atom positions and SAD data. Log-likelihood gradient (LLG) maps are used to automatically find additional sites for anomalous scatterers and to detect anisotropy in existing anomalous scatterers. Phaser can also use a partial model, for example from a molecular-replacement solution that is hard to refine, as a source of phase information to help locate weak anomalous scatterers and thus improved phases. The latter reflects the view of experimental phasing and molecular replacement as just two sources of phase information rather than two separate techniques. 3.3. Molecular replacement CCP4 includes two pipelines for molecular replacement (MR): MrBUMP (Keegan & Winn, 2007 ▶) and BALBES (Long et al., 2008 ▶). Both start from processed data and a target sequence and aim to deliver a molecular-replacement solution consisting of positioned and partially refined models. BALBES uses its own database of protein molecules and domains taken from the PDB and customized for MR, while MrBUMP uses public databases and a set of widely available bioinformatics tools to generate possible search models. BALBES is based around the MR program MOLREP (Vagin & Teplyakov, 1997 ▶, 2010 ▶), while MrBUMP can also use the program Phaser (McCoy et al., 2007 ▶). Both MOLREP and Phaser are also available as stand-alone programs in CCP4. As well as providing rotation and translation functions, whereby a search model is positioned in the unit cell to give an initial estimate of the phases, these programs provide additional functionality, including a significant contribution to automated decision-making. For instance, a single run of Phaser can search for several copies each of several components in the structure of a complex, testing different possible search orders and trying different possible choices of space group. The search model for MR may be an ensemble of structures, a set of models from an NMR structure or an electron-density map. Phases for the target may be available, so that the search model is to be fitted into electron density, or there may be density available from an electron-microscopy experiment. The MR step can be followed by rigid-body refinement and the packing of the MR solution can be checked. Much of this functionality is common to Phaser and MOLREP, but there are a number of differences in implementation, so that both may prove useful in certain circumstances. A crucial component of MR is the selection and preparation of search models. The program CHAINSAW (Stein, 2008 ▶) takes as input a sequence alignment which relates residues in the search model to residues in the target protein and uses this information to edit the search model appropriately. The output model is labelled according to the target sequence. MOLREP (Lebedev et al., 2008 ▶) can take as input the target sequence and performs its own alignment to the search model in order to edit the search model. 3.4. Phase improvement and automated model building Having obtained initial phases from experimental phasing, the next step is phase improvement (density modification) to give a map that can be built into. When phases come from molecular replacement, phase improvement may also be useful to reduce model bias. For a long time, the main CCP4 phase-improvement programs were DM (Cowtan et al., 2001 ▶) and SOLOMON (Abrahams & Leslie, 1996 ▶), which covered the standard techniques of solvent flattening/flipping, histogram matching and NCS averaging. More recently, statistically based methods have been incorporated into the program Pirate (Cowtan, 2000 ▶). Pirate can give better results, but has been found to be inconveniently slow. The latest program Parrot (Cowtan, 2010 ▶) achieves similar improvements but is also fast and automated. Given an electron-density map, automated model building is provided in CCP4 by Buccaneer (Cowtan, 2006 ▶, 2008 ▶). This finds candidate Cα positions, builds these into chain fragments, joins the fragments together and docks a sequence. NCS can be used to rebuild and complete related chains. Since version 1.4, there is support for model (re)building after molecular replacement and for supplying known structural elements such as heavy atoms. The CCP4 suite includes an interface for alternating cycles of model building with Buccaneer with cycles of model refinement with REFMAC5. The supplementary program Sloop (Cowtan, unpublished program) builds missing loops using fragments taken from the Richardson’s Top500 library of structures (Lovell et al., 2003 ▶) to fill gaps in the chain. The chance of finding a good fit falls with increasing size of the gap, but the method may work for loops of up to eight residues in length. RAPPER (Furnham et al., 2006 ▶) provides a conformational search algorithm for protein modelling, which can produce an ensemble of models satisfying a wide variety of restraint information. In the context of CCP4, restraints on the modelling are provided by the electron density and/or the locations of the Cα atoms. The ccp4i interface includes modes for loop building or for building the entire structure. 3.5. Refinement and model completion The aim of macromolecular crystallography is to produce a model of the macromolecule of interest which explains the diffraction images as accurately and completely as possible. Both the form of the model and the parameters of the model need to be defined. Refinement is the process of optimizing the values of the model parameters and in CCP4 is performed by the program REFMAC5 (Murshudov et al., 1997 ▶). REFMAC5 will refine atomic coordinates and atomic isotropic or anisotropic displacement parameters (Murshudov et al., 1999 ▶), as well as group parameters for rigid-body refinement and TLS refinement (Winn et al., 2001 ▶, 2003 ▶). It will also refine scaling parameters and a mask-based bulk-solvent correction. When good-quality experimental phases are available, these can be included as additional data (Pannu et al., 1998 ▶). More recently, it has become possible to refine directly against anomalous data for the cases of SAD (Skubák et al., 2004 ▶) and SIRAS (Skubák et al., 2009 ▶) without the need for estimated phases and phase probabilities. REFMAC5 will also now refine against twinned data (Lebedev et al., 2006 ▶), automatically recognising the twin laws and estimating the corresponding twin fractions. The nonprotein contents of the crystal are often of most interest, such as bound ligands, cofactors, metal sites etc. Correct refinement at moderate or low resolution requires a knowledge of the ideal geometry together with associated uncertainties. In REFMAC5 this is handled through a dictionary of possible ligands (Vagin et al., 2004 ▶), with details held in mmCIF format. Dictionary files can be created through the tools SKETCHER and JLIGAND. Refinement goes hand-in-hand with rounds of model building which add/subtract parts of the model and apply large structural changes that are beyond the reach of refinement. In addition to the automated procedures of Buccaneer and RAPPER described above, there are many model-building tools in Coot (Emsley et al., 2010 ▶). A ccp4i interface to the popular ARP/wARP model-building package (Langer et al., 2008 ▶) has also been available for many years. 3.6. Validation, deposition and publication Validation is the process of ensuring that all aspects of the model are supported by the diffraction data, as well as con­forming with known features of protein chemistry. Although validation has traditionally been viewed as something that is performed at the end of structure determination, just before deposition, it is now appreciated that validation is an integral part of the process of structure solution, which should be carried out continually. CCP4 includes a wide variety of validation tools, all of which should be run to gain a complete picture of model quality. Coot (Emsley et al., 2010 ▶) has a dedicated drop-down menu of validation tools which can and should be applied as the model is being built. Coot can also extract warnings about particular links or outliers from a REFMAC5 log file. Warnings associated with specific atoms or residues are linked directly to the model as viewed in Coot. The ccp4i ‘Validation and Deposition’ module contains further validation tools. As mentioned above, SFCHECK (Vaguine et al., 1999 ▶) provides a number of measures of data quality, but if a model is provided it will also assess the agreement of the model with the data. Sequins (Cowtan, unpublished program) validates the assigned sequence against electron density (generated from experimental phases or from phases calculated from a side-chain omit process) and warns of mis­placed side chains or register errors. RAMPAGE (which is part of the RAPPER package; Furnham et al., 2006 ▶) provides Ramachandran plots based on updated ϕ–ψ propensities. PROCHECK is also included, although the Ramachandran plots are no longer generated, having been superseded by RAMPAGE. R500 (Henrick, unpublished program) checks the stereochemistry in a given PDB file against expected values and lists outliers in REMARK 500 records. The quaternary structure of the protein can be analysed with PISA (Krissinel & Henrick, 2007 ▶). This considers all possible interfaces in the crystal structure, estimates the free energy of dissociation, taking into account solvation and entropy effects, and predicts which interfaces are likely to be of biological significance. The CCP4 molecular-graphics program CCP4mg (Potterton et al., 2002 ▶, 2004 ▶) provides a simple means of generating publication-quality images and movies. As well as displaying coordinates in a wide variety of styles, CCP4mg can display molecular surfaces, electron density, arbitrary vectors and labels. The latest versions are built on the Qt toolkit, giving an enhanced look and feel (Fig. 3 ▶). Structures and views can be transferred between CCP4mg and Coot. 3.7. Jiffies and utilities In addition to the main functionality described above, the CCP4 suite contains a large number of utilities for performing format conversions and various analyses. Reflection data processed in other software packages can be imported with the utilities COMBAT, POINTLESS, SCALEPACK2MTZ, DTREK2SCALA and DTREK2MTZ, while data can be exchanged with other structure-solution packages with CONVERT2MTZ, F2MTZ, CIF2MTZ, MTZ2VARIOUS and MTZ2CIF. There are several useful utilities based on the Clipper library (Cowtan, 2003 ▶), such as CPHASEMATCH, which will compare two phase sets and look for changes in origin or hand. There are also many useful utilities for analysing coordinate files. New programs based on the MMDB library (Krissinel et al., 2004 ▶) include NCONT for listing atom contacts and PDB_MERGE for combining two PDB files. 4. Future plans At the heart of the CCP4 suite are the set of algorithms encoded in individual programs. As always, we include new programs in each major release of the suite and will continue to do so. Since the source of novel software is usually independent developers, the additions to the suite are not centrally planned. Nevertheless, some current themes are clearly recognisable, such as automated model building, in particular for low-resolution data. CCP4 also aims to enhance its functionality related to the maintenance and use of data on small molecules (ligands). Firstly, a considerably larger library of chemical compounds will be provided with the suite. Extended search functions will be provided to allow the efficient retrieval of known com­pounds or their close analogues. Secondly, existing functions for generating restraint data for new ligands will be enhanced by the inclusion of relevant software such as PRODRG (Schüttelkopf & van Aalten, 2004 ▶) into the suite, as well as by the development of new methods for structure reconstruction on the basis of partial similarity to structures in the library. Functionality will be available through a graphical front-end application, JLIGAND. In addition to the core programs, the infrastructure of CCP4 continues to evolve to support the latest working practices. The current CCP4 GUI, ccp4i, was a major innovation and has served us well for over ten years (Potterton et al., 2003 ▶). While it continues to provide a useful interface to the CCP4 suite, there are increasing demands from automation pipelines and users alike. In particular, there is a requirement to provide help on what to try next, advice which can be useful to both scientists and automated software. This depends on a robust assessment of the experimental data and the results of previous processing, which in turn requires good data management. We aim to address these issues through the development of a next-generation CCP4 interface. There will also be changes in the way that CCP4 is delivered to the end user. We have all become used to automated up­dates to the software we use (e.g. Windows Update, Synaptic for Debian-based Linux or application-specific updates such as for Firefox). Some CCP4 programs do alert the users to the availability of newer versions and CCP4mg (Potterton et al., 2002 ▶, 2004 ▶) will update the version on request. A CCP4-wide update mechanism is more difficult given the heterogeneous nature of the suite, but efforts in this direction are under way. A specific example of a remotely maintained crystallography platform is given by the US-based SBGrid Consortium. The CCP4 suite is downloaded to a user’s machine or a local server before being run. This is in contrast to many biology software tools, which are web-based. Reasons for running CCP4 locally include the wallclock time of jobs, the detailed control required and the size of data files. Nevertheless, there is increasing usage of web servers for crystallographic tasks. A server at York ( runs a number of CCP4 programs, including BALBES and Buccaneer, while CCP4 programs are included in a number of other services, for example the ARP/wARP server at Hamburg ( Plans are under way to make more CCP4 functionality available via the web. Finally, the coming years will see increasing integration of crystallography with other techniques, both experimental and theoretical. CCP4 aims to contribute towards efforts, such as the European infrastructure project INSTRUCT, to ease the transfer of data to and from these other domains.
              • Record: found
              • Abstract: found
              • Article: not found

              Potential for biomolecular imaging with femtosecond X-ray pulses.

              Sample damage by X-rays and other radiation limits the resolution of structural studies on non-repetitive and non-reproducible structures such as individual biomolecules or cells. Cooling can slow sample deterioration, but cannot eliminate damage-induced sample movement during the time needed for conventional measurements. Analyses of the dynamics of damage formation suggest that the conventional damage barrier (about 200 X-ray photons per A2 with X-rays of 12 keV energy or 1 A wavelength) may be extended at very high dose rates and very short exposure times. Here we have used computer simulations to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies. Estimations of radiation damage as a function of photon energy, pulse length, integrated pulse intensity and sample size show that experiments using very high X-ray dose rates and ultrashort exposures may provide useful structural information before radiation damage destroys the sample. We predict that such ultrashort, high-intensity X-ray pulses from free-electron lasers that are currently under development, in combination with container-free sample handling methods based on spraying techniques, will provide a new approach to structural determinations with X-rays.

                Author and article information

                Science (New York, N.Y.)
                Dec 5 2014
                : 346
                : 6214
                [1 ] Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA.
                [2 ] Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
                [3 ] Department of Physics, Arizona State University, Tempe, AZ 85287, USA.
                [4 ] Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA.
                [5 ] Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
                [6 ] Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany.
                [7 ] Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
                [8 ] Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA.
                [9 ] Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
                [10 ] Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA.
                [11 ] Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
                [12 ] Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
                [13 ] Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA.
                346/6214/1242 NIHMS669608
                Copyright © 2014, American Association for the Advancement of Science.


                Comment on this article