15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carbohydrate Mouth Rinsing Enhances High Intensity Time Trial Performance Following Prolonged Cycling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is good evidence that mouth rinsing with carbohydrate (CHO) solutions can enhance endurance performance (≥30 min). The impact of a CHO mouth rinse on sprint performance has been less consistent, suggesting that CHO may confer benefits in conditions of ‘metabolic strain’. To test this hypothesis, the current study examined the impact of late-exercise mouth rinsing on sprint performance. Secondly, we investigated the effects of a protein mouth rinse (PRO) on performance. Eight trained male cyclists participated in three trials consisting of 120 min of constant-load cycling (55% W max) followed by a 30 km computer-simulated time trial, during which only water was provided. Following 15 min of muscle function assessment, 10 min of constant-load cycling (3 min at 35% W max, 7 min at 55% W max) was performed. This was immediately followed by a 2 km time trial. Subjects rinsed with 25 mL of CHO, PRO, or placebo (PLA) at min 5:00 and 14:30 of the 15 min muscle function phase, and min 8:00 of the 10-min constant-load cycling. Magnitude-based inferential statistics were used to analyze the effects of the mouth rinse on 2-km time trial performance and the following physiological parameters: Maximum Voluntary Contract (MVC), Rating of Perceived Exertion (RPE), Heart Rate (HR), and blood glucose levels. The primary finding was that CHO ‘likely’ enhanced performance vs. PLA (3.8%), whereas differences between PRO and PLA were unclear (0.4%). These data demonstrate that late-race performance is enhanced by a CHO rinse, but not PRO, under challenging metabolic conditions. More data should be acquired before this strategy is recommended for the later stages of cycling competition under more practical conditions, such as when carbohydrates are supplemented throughout the preceding minutes/hours of exercise.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity.

          Exercise studies have suggested that the presence of carbohydrate in the human mouth activates regions of the brain that can enhance exercise performance but direct evidence of such a mechanism is limited. The first aim of the present study was to observe how rinsing the mouth with solutions containing glucose and maltodextrin, disguised with artificial sweetener, would affect exercise performance. The second aim was to use functional magnetic resonance imaging (fMRI) to identify the brain regions activated by these substances. In Study 1A, eight endurance-trained cyclists (VO2max 60.8 +/- 4.1 ml kg(-1) min(-1)) completed a cycle time trial (total work = 914 +/- 29 kJ) significantly faster when rinsing their mouths with a 6.4% glucose solution compared with a placebo containing saccharin (60.4 +/- 3.7 and 61.6 +/- 3.8 min, respectively, P = 0.007). The corresponding fMRI study (Study 1B) revealed that oral exposure to glucose activated reward-related brain regions, including the anterior cingulate cortex and striatum, which were unresponsive to saccharin. In Study 2A, eight endurance-trained cyclists (VO2max 57.8 +/- 3.2 ml kg(-1) min(-1)) tested the effect of rinsing with a 6.4% maltodextrin solution on exercise performance, showing it to significantly reduce the time to complete the cycle time trial (total work = 837 +/- 68 kJ) compared to an artificially sweetened placebo (62.6 +/- 4.7 and 64.6 +/- 4.9 min, respectively, P = 0.012). The second neuroimaging study (Study 2B) compared the cortical response to oral maltodextrin and glucose, revealing a similar pattern of brain activation in response to the two carbohydrate solutions, including areas of the insula/frontal operculum, orbitofrontal cortex and striatum. The results suggest that the improvement in exercise performance that is observed when carbohydrate is present in the mouth may be due to the activation of brain regions believed to be involved in reward and motor control. The findings also suggest that there may be a class of so far unidentified oral receptors that respond to carbohydrate independently of those for sweetness.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbohydrate feeding during prolonged strenuous exercise can delay fatigue.

              This study was undertaken to determine whether carbohydrate feeding during exercise can delay the development of fatigue. Ten trained cyclists performed two bicycle ergometer exercise tests 1 wk apart. The initial work rate required 74 +/- 2% of maximum O2 consumption (VO2 max) (range 70-79% of VO2 max). The point of fatigue was defined as the time at which the exercise intensity the subjects could maintain decreased below their initial work rate by 10% of VO2 max. During one exercise test the subjects were fed a glucose polymer solution beginning 20 min after the onset of exercise; during the other they were given a placebo. Blood glucose concentration was 20-40% higher during the exercise after carbohydrate ingestion than during the exercise without carbohydrate feeding. The exercise-induced decrease in plasma insulin was prevented by carbohydrate feeding. The respiratory exchange ratio was unchanged by the glucose feeding. Fatigue was postponed by carbohydrate feeding in 7 of the 10 subjects. This effect appeared to be mediated by prevention of hypoglycemia in only two subjects. The exercise time to fatigue for the 10 subjects averaged 134 +/- 6 min (mean +/- SE) without and 157 +/- 5 min with carbohydrate feeding (P less than 0.01).
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                20 September 2016
                September 2016
                : 8
                : 9
                : 576
                Affiliations
                Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA; saundemj@ 123456jmu.edu (M.J.S.); dlugosac@ 123456jmu.edu (A.C.D.); patakymw@ 123456jmu.edu (M.W.P.); dab13b@ 123456my.fsu.edu (D.A.B.); viningcb@ 123456gmail.com (C.B.V.); abschroer@ 123456mix.wvu.edu (A.B.S.)
                Author notes
                [* ]Correspondence: ludennd@ 123456jmu.edu ; Tel.: +1-540-568-4069
                Article
                nutrients-08-00576
                10.3390/nu8090576
                5037560
                27657117
                71b84724-264b-4e47-ac60-706a2ddc3a00
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 September 2016
                : 14 September 2016
                Categories
                Article

                Nutrition & Dietetics
                cycling,endurance performance,maltodextrin,mouth wash,oralpharyngeal receptor,whey protein

                Comments

                Comment on this article