26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions.

          Methods

          Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously.

          Results

          Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC.

          Conclusions

          Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these miRNAs. miR-200 family members, targeting EMT drivers, were mostly overexpressed in both subgroups, among which miR-200c-3p was associated with survival in HGSC patients. A set of miRNAs differentiates CCC from HGSC, of which miR-509-3-5p and miR-509-5p are the strongest classifiers. Several interactions between miRNAs and mRNAs in HGSC were mapped.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Switching from repression to activation: microRNAs can up-regulate translation.

          AU-rich elements (AREs) and microRNA target sites are conserved sequences in messenger RNA (mRNA) 3' untranslated regions (3'UTRs) that control gene expression posttranscriptionally. Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) mRNA is transformed into a translation activation signal, recruiting Argonaute (AGO) and fragile X mental retardation-related protein 1 (FXR1), factors associated with micro-ribonucleoproteins (microRNPs). We show that human microRNA miR369-3 directs association of these proteins with the AREs to activate translation. Furthermore, we document that two well-studied microRNAs-Let-7 and the synthetic microRNA miRcxcr4-likewise induce translation up-regulation of target mRNAs on cell cycle arrest, yet they repress translation in proliferating cells. Thus, activation is a common function of microRNPs on cell cycle arrest. We propose that translation regulation by microRNPs oscillates between repression and activation during the cell cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene silencing by microRNAs: contributions of translational repression and mRNA decay.

            Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA expression profiles in serous ovarian carcinoma.

              Although microRNAs have recently been recognized as riboregulators of gene expression, little is known about microRNA expression profiles in serous ovarian carcinoma. We assessed the expression of microRNA and the association between microRNA expression and the prognosis of serous ovarian carcinoma. Twenty patients diagnosed with serous ovarian carcinoma and eight patients treated for benign uterine disease between December 2000 and September 2003 were enrolled in this study. The microRNA expression profiles were examined using DNA microarray and Northern blot analyses. Several microRNAs were differentially expressed in serous ovarian carcinoma compared with normal ovarian tissues, including miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, and miR-99a, which were each differentially expressed in >16 patients. In addition, the expression levels of some microRNAs were correlated with the survival in patients with serous ovarian carcinoma. Higher expression of miR-200, miR-141, miR-18a, miR-93, and miR-429, and lower expression of let-7b, and miR-199a were significantly correlated with a poor prognosis (P < 0.05). Our results indicate that dysregulation of microRNAs is involved in ovarian carcinogenesis and associated with the prognosis of serous ovarian carcinoma.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2014
                11 February 2014
                : 14
                : 80
                Affiliations
                [1 ]Department of Gynecological Oncology, Oslo University Hospital (OUH), The Norwegian Radium Hospital, Postbox 4953 Nydalen 0424, Oslo, Norway
                [2 ]Department of Medical Biochemistry, OUH, Ullevaal, Oslo, Norway
                [3 ]Faculty of Medicine, University of Oslo, Oslo, Norway
                [4 ]Department of Biostatistics and Epidemiology, OUH, Ullevaal, Oslo, Norway
                [5 ]Department of Gynecology and Obstetrics, OUH, Ullevaal, Oslo, Norway
                [6 ]Department of Pathology, OUH, The Norwegian Radium Hospital, Oslo, Norway
                Article
                1471-2407-14-80
                10.1186/1471-2407-14-80
                3928323
                24512620
                71d46fff-0772-4f6f-8418-f50976f0e305
                Copyright © 2014 Vilming Elgaaen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 9 August 2013
                : 7 February 2014
                Categories
                Research Article

                Oncology & Radiotherapy
                quantitative pcr,microrna,ovarian carcinoma,survival,microarray
                Oncology & Radiotherapy
                quantitative pcr, microrna, ovarian carcinoma, survival, microarray

                Comments

                Comment on this article