9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure and function of transmembrane segment XII in osmosensor and osmoprotectant transporter ProP of Escherichia coli.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Escherichia coli transporter ProP acts as both an osmosensor and an osmoregulator. As medium osmolality rises, ProP is activated and mediates H+-coupled uptake of osmolytes like proline. A homology model of ProP with 12-transmembrane (TM) helices and cytoplasmic termini was created, and the protein's topology was substantiated experimentally. Residues 468-497, at the end of the C-terminal domain and linked to TM XII, form an intermolecular, homodimeric alpha-helical coiled-coil that tunes the transporter's response to osmolality. We aim to further define the structure and function of ProP residues Q415-E440, predicted to include TM XII. Each residue was replaced with cysteine (Cys) in a histidine-tagged, Cys-less ProP variant (ProP*). Cys at positions 415-418 and 438-440 were most reactive with Oregon Green Maleimide (OGM), suggesting that residues 419 through 437 are in the membrane. Except for V429-I433, reactivity of those Cys varied with helical periodicity. Cys predicted to face the interior of ProP were more reactive than Cys predicted to face the lipid. The former may be exposed to hydrated polar residues in the protein interior, particularly on the periplasmic side. Intermolecular cross-links formed when ProP* variants with Cys at positions 419, 420, 422, and 439 were treated with DTME. Thus TM XII can participate, along its entire length, in the dimer interface of ProP. Cys substitution E440C rendered ProP* inactive. All other variants retained more than 30% of the proline uptake activity of ProP* at high osmolality. Most variants with Cys substitutions in the periplasmic half of TM XII activated at lower osmolalities than ProP*. Variants with Cys substitutions on one face of the cytoplasmic half of TM XII required a higher osmolality to activate. They included elements of a GXXXG motif that are predicted to form the interface of TM XII with TM VII. These studies define the position of ProP TM XII within the membrane, further support the predicted structure of ProP, reveal the dimerization interface, and show that the structure of TM XII influences the osmolality at which ProP activates.

          Related collections

          Author and article information

          Journal
          Biochemistry
          Biochemistry
          American Chemical Society (ACS)
          0006-2960
          0006-2960
          May 15 2007
          : 46
          : 19
          Affiliations
          [1 ] Department of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, ON Canada.
          Article
          10.1021/bi062198r
          17441691
          71e3e447-f1ed-4385-8fd4-1b8ff5575e38
          History

          Comments

          Comment on this article