16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recirculating Aquaculture Is Possible without Major Energy Tradeoff: Life Cycle Assessment of Warmwater Fish Farming in Sweden

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seafood is seen as promising for more sustainable diets. The increasing production in land-based closed Recirculating Aquaculture Systems (RASs) has overcome many local environmental challenges with traditional open net-pen systems such as eutrophication. The energy needed to maintain suitable water quality, with associated emissions, has however been seen as challenging from a global perspective. This study uses Life Cycle Assessment (LCA) to investigate the environmental performance and improvement potentials of a commercial RAS farm of tilapia and Clarias in Sweden. The environmental impact categories and indicators considered were freshwater eutrophication, climate change, energy demand, land use, and dependency on animal-source feed inputs per kg of fillet. We found that feed production contributed most to all environmental impacts (between 67 and 98%) except for energy demand for tilapia, contradicting previous findings that farm-level energy use is a driver of environmental pressures. The main improvement potentials include improved by-product utilization and use of a larger proportion of plant-based feed ingredients. Together with further smaller improvement potential identified, this suggests that RASs may play a more important role in a future, environmentally sustainable food system.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Food security: the challenge of feeding 9 billion people.

          Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solutions for a cultivated planet.

            Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reducing food’s environmental impacts through producers and consumers

              Food's environmental impacts are created by millions of diverse producers. To identify solutions that are effective under this heterogeneity, we consolidated data covering five environmental indicators; 38,700 farms; and 1600 processors, packaging types, and retailers. Impact can vary 50-fold among producers of the same product, creating substantial mitigation opportunities. However, mitigation is complicated by trade-offs, multiple ways for producers to achieve low impacts, and interactions throughout the supply chain. Producers have limits on how far they can reduce impacts. Most strikingly, impacts of the lowest-impact animal products typically exceed those of vegetable substitutes, providing new evidence for the importance of dietary change. Cumulatively, our findings support an approach where producers monitor their own impacts, flexibly meet environmental targets by choosing from multiple practices, and communicate their impacts to consumers.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ Sci Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                28 November 2020
                15 December 2020
                : 54
                : 24
                : 16062-16070
                Affiliations
                []RISE Research Institutes of Sweden, Agrifood and Bioscience , P. O. Box 5401, 402 29 Göteborg, Sweden
                []Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences , 104 05 Stockholm, Sweden
                [§ ]Stockholm Resilience Centre, Stockholm University , Kräftriket 2B, 106 91 Stockholm, Sweden
                []Worldfish , Jalan Batu Maung, 11960 Penang, Malaysia
                []Department of Biological Sciences, Norwegian University of Science and Technology , Larsgårdsvegen 2, 6009 Ålesund, Norway
                Author notes
                Article
                10.1021/acs.est.0c01100
                7745531
                33251804
                71ec8206-77a0-4336-b6b0-f4991e55cc6f
                © 2020 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 21 February 2020
                : 16 November 2020
                : 13 November 2020
                Categories
                Article
                Custom metadata
                es0c01100
                es0c01100

                General environmental science
                General environmental science

                Comments

                Comment on this article