6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      CFD SIMULATION OF MOTION RESPONSES OF A TRIMARAN IN REGULAR HEAD WAVES

      , , , ,
      International Journal of Maritime Engineering
      University of Buckingham Press

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CFD has proved to be an effective method in solving unsteady Reynolds–Averaged Navier-Stokes (RANS) equations for analysing ships in free surface viscous flow. The research reported in this paper is intended to develop a better understanding of the parameters influencing high-speed trimaran motions responses. Variations of gridding system and time step have been investigated and reliability analysis was performed in solving the RANS equations. Different turbulence models were investigated, and the SST Menter K Omega turbulence model proved a more accurate model than Realizable K-epsilon model. In order to validate the CFD method, the results of the motions response of a high- speed trimaran are compared against a set of experimental and numerical results from a 1.6 m trimaran model tested in various head seas conditions. The results suggest that CFD offers a reliable method for predicting pitch and heave motions of trimarans in regular head waves when compared to traditional low speed strip theory methods. Unlike strip theory, the effect of breaking waves, hull shape above waterline and green seas are considered in CFD application. A wave resonance phenomenon was observed and wave deformation as a result of wave-current-wind interaction in CFD was identified as the main source of discrepancy. The results from this work form the basis for future analysis of trimaran motions in oblique seas for developing a better understanding of the parameters influencing the seakeeping response, as well as passenger comfort.

          Related collections

          Author and article information

          Journal
          International Journal of Maritime Engineering
          IJME
          University of Buckingham Press
          1479-8751
          1479-8751
          December 13 2021
          December 13 2021
          : 162
          : A1
          Article
          10.5750/ijme.v162iA1.1125
          71f9f2b5-5bc3-4ca1-980c-e0c36a529efe
          © 2021
          History

          General engineering,Engineering,Civil engineering,Mechanical engineering
          General engineering, Engineering, Civil engineering, Mechanical engineering

          Comments

          Comment on this article