34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems

      research-article
      1 , 2 , 1 , * ,
      International Polymer Processing
      Carl Hanser Verlag

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the electrical conductivity and percolation behavior of binary and ternary nanocomposites based on multiwalled carbon nanotubes (MWCNs) using polypropylene (PP) and a blend of PP with cyclic butylene terephthalate (CBT). The nanocomposites were prepared by diluting a commercial 20 %wtMWCNT PP masterbatch using optimized melt-mixing conditions. The concentration of carbon nanotubes in the diluted PP samples was as low as 0.5 % and as high as 15 % in weight. For the PP/CBT blend CBT concentration was varied up to 40 %wt while the loading of CNT was from 0 to 5 %wt. SEM and TEM techniques were used to examine the quality of the dispersion and the formation of nanotube networks within the polymer matrix. TEM and Raman spectroscopy results showed that for the diluted PP/MWCNT composites the nanotubes are well aligned in samples obtained the microinjection molding process, although the level of alignment is less with crystalline PP than in an amorphous matrix such as polycarbonate (PC). FTIR and XRD results revealed that the orientation of both polymer chains and crystals decreased with the incorporation of nanotubes into PP. The electrical conductivity was also significantly altered by the nanotube alignment in a PP matrix, as was previously observed for PC/MWCNT composites; the conductivity decreased and the percolation threshold rose in highly sheared samples; however, the presence of a crystalline phase improved the conductivity even for high shear conditions through the phenomenon of double percolation threshold. This last concept refers to the requirement that the filler-rich phase be continuous and conductive and not to the existence of two percolation thresholds at two different CNT concentrations. The electrical conductivity of PP/CBT blends was also improved through a double percolation that is the basic requirement for the conductivity of the ternary nanocomposites.

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Polymer Nanocomposites Containing Carbon Nanotubes

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rheological behavior of multiwalled carbon nanotube/polycarbonate composites

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Physics of carbon nanotubes

                Bookmark

                Author and article information

                Journal
                ipp
                International Polymer Processing
                Carl Hanser Verlag
                0930-777X
                2195-8602
                28 March 2014
                : 29
                : 1
                : 13-27
                Affiliations
                1 CREPEC, Department of Chemical Engineering, Ecole Polytechnique, Montreal, QC, Canada
                2 National Research Council Canada, Boucherville, QC, Canada
                Author notes
                [* ] Mail address: Pierre J. Carreau, Department of Chemical Engineering, Ecole Polytechnique, Montreal, QC, Canada E-mail: pcarreau@ 123456polymtl.ca
                Article
                IPP2778
                10.3139/217.2778
                71fadb13-a7a6-4b51-937c-dc1cf9bc4e28
                © 2014, Carl Hanser Verlag, Munich
                History
                : 5 March 2013
                : 6 October 2013
                Page count
                References: 67, Pages: 15
                Categories
                Invited Articles

                Polymer science,Materials technology,Materials characterization,General engineering,Polymer chemistry

                Comments

                Comment on this article