15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Age-Associated Remodeling of Neural and Nonneural Thymic Catecholaminergic Network Affects Thymopoietic Productivity

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naïve T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via β<sub>2</sub>- and α<sub>1</sub>-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of β<sub>2</sub>- and α<sub>1</sub>-AR-expressing thymic nonlymphoid cells and the α<sub>1</sub>-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving α<sub>1</sub>-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naïve T cell output.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cell lineage specification by the forkhead transcription factor foxp3.

          Regulatory T cell-mediated dominant tolerance has been demonstrated to play an important role in the prevention of autoimmunity. Here, we present data arguing that the forkhead transcription factor Foxp3 acts as the regulatory T cell lineage specification factor and mediator of the genetic mechanism of dominant tolerance. We show that expression of Foxp3 is highly restricted to the subset alphabeta of T cells and, irrespective of CD25 expression, correlates with suppressor activity. Induction of Foxp3 expression in nonregulatory T cells does not occur during pathogen-driven immune responses, and Foxp3 deficiency does not impact the functional responses of nonregulatory T cells. Furthermore, T cell-specific ablation of Foxp3 is sufficient to induce the identical early onset lymphoproliferative syndrome observed in Foxp3-deficient mice. Analysis of Foxp3 expression during thymic development suggests that this mechanism is not hard-wired but is dependent on TCR/MHC ligand interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical relevance of age-related immune dysfunction.

            S Castle (2000)
            Immunosenescence is the state of dysregulated immune function that contributes to the increased susceptibility to infection of the elderly. Extensive studies of inbred laboratory animals and very healthy elderly humans have identified changes in immunity; these studies have identified limited phenotypic and functional changes in the T cell component of adaptive immunity. However, no compelling scientific evidence has shown that these changes have direct relevance to the common infections seen in the aged population. This perspective will attempt to shed light on this dilemma. First, it will review clinically relevant infections in the elderly, focusing on influenza and influenza virus vaccination and how chronic illness contributes to increased risk and severity of infection and/or failed vaccine response. Second, key changes in immunity will be reviewed, keeping a perspective of the impact of confounding variables in addition to age but focusing on age-related changes in the interaction of the innate and acquired components of immunity. If the goal is to prevent serious infections in the elderly, it appears that the field of geriatric immunology and/or infectious diseases is faced with the tremendous challenge of studying a very diverse population, including mildly immunocompromised/chronically ill individuals and very healthy elderly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thymic involution and immune reconstitution.

              Chronic thymus involution associated with aging results in less efficient T-cell development and decreased emigration of naïve T cells to the periphery. Thymic decline in the aged is linked to increased morbidity and mortality in a wide range of clinical settings. Negative consequences of these effects on global health make it of paramount importance to understand the mechanisms driving thymic involution and homeostatic processes across the lifespan. There is growing evidence that thymus tissue is plastic and that the involution process might be therapeutically halted or reversed. We present here progress on the exploitation of thymosuppressive and thymostimulatory pathways using factors such as keratinocyte growth factor, interleukin 7 or sex steroid ablation for therapeutic thymus restoration and peripheral immune reconstitution in adults.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                978-3-8055-9831-6
                978-3-8055-9832-3
                1021-7401
                1423-0216
                2011
                September 2011
                22 September 2011
                : 18
                : 5
                : 290-308
                Affiliations
                aImmunology Research Centre ‘Branislav Janković’, Institute of Virology, Vaccines and Sera ‘Torlak’, and bDepartment of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
                Author notes
                *Prof. Gordana Leposavić, MD, PhD, Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, RS–11221 Belgrade (Serbia), Tel. +381 11 3951 209, E-Mail Gordana.Leposavic@pharmacy.bg.ac.rs
                Article
                329499 Neuroimmunomodulation 2011;18:290–308
                10.1159/000329499
                21952681
                720810c6-44ae-416a-913b-74a3c4570e32
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 4, Pages: 19
                Categories
                Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Catecholamines,α-Adrenoceptors,Thymopoiesis,β-Adrenoceptors,Ageing

                Comments

                Comment on this article