115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Zebrafish as a New Model for the In Vivo Study of Shigella flexneri Interaction with Phagocytes and Bacterial Autophagy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, the role of bacterial autophagy in vivo remains poorly understood. The zebrafish ( Danio rerio) has emerged as a vertebrate model for the study of infections because it is optically accessible at the larval stages when the innate immune system is already functional. Here, we have characterized the susceptibility of zebrafish larvae to Shigella flexneri, a paradigm for bacterial autophagy, and have used this model to study Shigella-phagocyte interactions in vivo. Depending on the dose, S. flexneri injected in zebrafish larvae were either cleared in a few days or resulted in a progressive and ultimately fatal infection. Using high resolution live imaging, we found that S. flexneri were rapidly engulfed by macrophages and neutrophils; moreover we discovered a scavenger role for neutrophils in eliminating infected dead macrophages and non-immune cell types that failed to control Shigella infection. We observed that intracellular S. flexneri could escape to the cytosol, induce septin caging and be targeted to autophagy in vivo. Depletion of p62 (sequestosome 1 or SQSTM1), an adaptor protein critical for bacterial autophagy in vitro, significantly increased bacterial burden and host susceptibility to infection. These results show the zebrafish larva as a new model for the study of S. flexneri interaction with phagocytes, and the manipulation of autophagy for anti-bacterial therapy in vivo.

          Author Summary

          Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, a complete understanding of the molecules and mechanisms restricting cytosolic bacteria has not been obtained, and the role of bacterial autophagy in vivo remains poorly understood. Shigella flexneri are human-adapted Escherichia coli that have gained the ability to invade the colonic mucosa, causing inflammation and diarrhea. The intracellular lifestyle of this pathogen has been well-studied in vitro, and Shigella has recently gained recognition as a paradigm of bacterial autophagy. We show that the zebrafish larva represents a valuable new host for the analysis of S. flexneri infection. Interactions between bacteria and host phagocytes can be imaged at high resolution in vivo, and the zebrafish model should prove useful for understanding the cell biology of Shigella infection. We use zebrafish larvae to investigate the role of bacterial autophagy in host defense, and observed that the perturbation of autophagy can adversely affect host survival in response to Shigella infection. Therefore, the zebrafish constitutes a valuable system to develop new strategies aimed at pathogen clearance by manipulation of anti-bacterial autophagy.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.

            Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophage-specific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shigella flexneri induces apoptosis in infected macrophages.

              The Gram-negative bacterial pathogen Shigella flexneri causes dysentery by invading the human colonic mucosa. Bacteria are phagocytosed by enterocytes, escape from the phagosome into the cytoplasm and spread to adjacent cells. After crossing the epithelium, Shigella reaches the lamina propria of intestinal villi, the first line of defence. This tissue is densely populated with phagocytes that are killed in great numbers, resulting in abscesses. The genes required for cell invasion and macrophage killing are located on a 220-kilobase plasmid. We report here on the mechanism of cytotoxicity used by S. flexneri to kill macrophages. Each of four different strains was tested for its capacity to induce cell death. An invasive strain induced programmed cell death (apoptosis), whereas its non-invasive, plasmidcured isogenic strain was not toxic; neither was a mutant in ipa B (ref. 10) (invasion protein antigen), a gene necessary for entry. A non-invasive strain expressing the haemolysin operon of Escherichia coli induced accidental cell death (necrosis), demonstrating that other bacterial cytotoxic mechanisms do not lead to apoptosis. This is the first evidence that an invasive bacterial pathogen can induce suicide in its host cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2013
                September 2013
                5 September 2013
                : 9
                : 9
                : e1003588
                Affiliations
                [1 ]Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
                [2 ]Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Paris, France
                [3 ]Inserm, U604, Paris, France
                [4 ]INRA, USC2020, Paris, France
                [5 ]Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et des Cellules Souches, Paris, France
                [6 ]CNRS, URA2578, Paris, France
                [7 ]INRA, Virologie et Immunologie Moléculaire, Jouy-en-Josas, France
                [8 ]Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
                University of Illinois, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SM JPL ECG. Performed the experiments: SM LB MJMM AS MH JPL ECG. Analyzed the data: SM LB MJMM AS MH JPL ECG. Contributed reagents/materials/analysis tools: PB. Wrote the paper: SM PB PC PH JPL ECG.

                Article
                PPATHOGENS-D-13-00274
                10.1371/journal.ppat.1003588
                3764221
                24039575
                72092437-ce32-4314-9e3a-85edd2a02928
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 January 2013
                : 19 July 2013
                Page count
                Pages: 18
                Funding
                Funding for this work was provided by a Programmes Transversaux de Recherche (PTR) grant from Institut Pasteur to SM, LB and ECG (PTR#372) and by a Zebraflam grant from Agence Nationale de Recherche (ANR-10-MIDI-009). Work in the SM laboratory is supported by a Wellcome Trust Research Career Development Fellowship [WT097411MA]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Immunity to Infections
                Innate Immunity
                Immune Cells
                Immunologic Subspecialties
                Microbiology
                Bacterial Pathogens
                Gram Negative
                Host-Pathogen Interaction
                Model Organisms
                Animal Models
                Zebrafish
                Molecular Cell Biology
                Cellular Structures
                Cytoskeleton

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article