187
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Methylation of cytosine in DNA (5mC) is an important epigenetic mark that is involved in the regulation of genome function. During early embryonic development in mammals, the methylation landscape is dynamically reprogrammed in part through active demethylation. Recent advances have identified key players involved in active demethylation pathways, including oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) by the TET enzymes, and excision of 5fC by the base excision repair enzyme thymine DNA glycosylase (TDG). Here, we provide the first genome-wide map of 5fC in mouse embryonic stem (ES) cells and evaluate potential roles for 5fC in differentiation.

          Results

          Our method exploits the unique reactivity of 5fC for pulldown and high-throughput sequencing. Genome-wide mapping revealed 5fC enrichment in CpG islands (CGIs) of promoters and exons. CGI promoters in which 5fC was relatively more enriched than 5mC or 5hmC corresponded to transcriptionally active genes. Accordingly, 5fC-rich promoters had elevated H3K4me3 levels, associated with active transcription, and were frequently bound by RNA polymerase II. TDG down-regulation led to 5fC accumulation in CGIs in ES cells, which correlates with increased methylation in these genomic regions during differentiation of ES cells in wild-type and TDG knockout contexts.

          Conclusions

          Collectively, our data suggest that 5fC plays a role in epigenetic reprogramming within specific genomic regions, which is controlled in part by TDG-mediated excision. Notably, 5fC excision in ES cells is necessary for the correct establishment of CGI methylation patterns during differentiation and hence for appropriate patterns of gene expression during development.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Small-sample estimation of negative binomial dispersion, with applications to SAGE data.

          We derive a quantile-adjusted conditional maximum likelihood estimator for the dispersion parameter of the negative binomial distribution and compare its performance, in terms of bias, to various other methods. Our estimation scheme outperforms all other methods in very small samples, typical of those from serial analysis of gene expression studies, the motivating data for this study. The impact of dispersion estimation on hypothesis testing is studied. We derive an "exact" test that outperforms the standard approximate asymptotic tests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome.

            The study of 5-hydroxylmethylcytosines (5hmC) has been hampered by the lack of a method to map it at single-base resolution on a genome-wide scale. Affinity purification-based methods cannot precisely locate 5hmC nor accurately determine its relative abundance at each modified site. We here present a genome-wide approach, Tet-assisted bisulfite sequencing (TAB-Seq), that when combined with traditional bisulfite sequencing can be used for mapping 5hmC at base resolution and quantifying the relative abundance of 5hmC as well as 5mC. Application of this method to embryonic stem cells not only confirms widespread distribution of 5hmC in the mammalian genome but also reveals sequence bias and strand asymmetry at 5hmC sites. We observe high levels of 5hmC and reciprocally low levels of 5mC near but not on transcription factor-binding sites. Additionally, the relative abundance of 5hmC varies significantly among distinct functional sequence elements, suggesting different mechanisms for 5hmC deposition and maintenance. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.

              In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2012
                17 August 2012
                : 13
                : 8
                : R69
                Affiliations
                [1 ]Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
                [2 ]Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson way, Cambridge, CB2 0RE, UK
                [3 ]Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
                [4 ]Centre for Trophoblast Research, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UK
                [5 ]Proteomics Research Group, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
                [6 ]School of Clinical Medicine, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0SP, UK
                Article
                gb-2012-13-8-r69
                10.1186/gb-2012-13-8-r69
                3491369
                22902005
                720b4713-60b4-47df-b897-7af78c55d57b
                Copyright ©2012 Raiber et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 June 2012
                : 13 August 2012
                : 17 August 2012
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article