18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bmp7 Maintains Undifferentiated Kidney Progenitor Population and Determines Nephron Numbers at Birth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The number of nephrons, the functional units of the kidney, varies among individuals. A low nephron number at birth is associated with a risk of hypertension and the progression of renal insufficiency. The molecular mechanisms determining nephron number during embryogenesis have not yet been clarified. Germline knockout of bone morphogenetic protein 7 (Bmp7) results in massive apoptosis of the kidney progenitor cells and defects in early stages of nephrogenesis. This phenotype has precluded analysis of Bmp7 function in the later stage of nephrogenesis. In this study, utilization of conditional null allele of Bmp7 in combination with systemic inducible Cre deleter mice enabled us to analyze Bmp7 function at desired time points during kidney development, and to discover the novel function of Bmp7 to inhibit the precocious differentiation of the progenitor cells to nephron. Systemic knockout of Bmp7 in vivo after the initiation of kidney development results in the precocious differentiation of the kidney progenitor cells to nephron, in addition to the prominent apoptosis of progenitor cells. We also confirmed that in vitro knockout of Bmp7 in kidney explant culture results in the accelerated differentiation of progenitor population. Finally we utilized colony-forming assays and demonstrated that Bmp7 inhibits epithelialization and differentiation of the kidney progenitor cells. These results indicate that the function of Bmp7 to inhibit the precocious differentiation of the progenitor cells together with its anti-apoptotic effect on progenitor cells coordinately maintains renal progenitor pool in undifferentiated status, and determines the nephron number at birth.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development.

          Nephrons, the basic functional units of the kidney, are generated repetitively during kidney organogenesis from a mesenchymal progenitor population. Which cells within this pool give rise to nephrons and how multiple nephron lineages form during this protracted developmental process are unclear. We demonstrate that the Six2-expressing cap mesenchyme represents a multipotent nephron progenitor population. Six2-expressing cells give rise to all cell types of the main body of the nephron during all stages of nephrogenesis. Pulse labeling of Six2-expressing nephron progenitors at the onset of kidney development suggests that the Six2-expressing population is maintained by self-renewal. Clonal analysis indicates that at least some Six2-expressing cells are multipotent, contributing to multiple domains of the nephron. Furthermore, Six2 functions cell autonomously to maintain a progenitor cell status, as cap mesenchyme cells lacking Six2 activity contribute to ectopic nephron tubules, a mechanism dependent on a Wnt9b inductive signal. Taken together, our observations suggest that Six2 activity cell-autonomously regulates a multipotent nephron progenitor population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye.

            BMP-7/OP-1, a member of the transforming growth factor-beta (TGF-beta) family of secreted growth factors, is expressed during mouse embryogenesis in a pattern suggesting potential roles in a variety of inductive tissue interactions. The present study demonstrates that mice lacking BMP-7 display severe defects confined to the developing kidney and eye. Surprisingly, the early inductive tissue interactions responsible for establishing both organs appear largely unaffected. However, the absence of BMP-7 disrupts the subsequent cellular interactions required for their continued growth and development. Consequently, homozygous mutant animals exhibit renal dysplasia and anophthalmia at birth. Overall, these findings identify BMP-7 as an essential signaling molecule during mammalian kidney and eye development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning.

              Bone morphogenetic proteins (BMPs) are multifunctional growth factors originally identified by their ability to induce ectopic bone formation. To investigate the function of one of the BMPs, BMP-7, we have generated BMP-7-deficient mice using embryonic stem cell technology. BMP-7-deficient mice die shortly after birth because of poor kidney development. Histological analysis of mutant embryos at several stages of development revealed that metanephric mesenchymal cells fail to differentiate, resulting in a virtual absence of glomerulus in newborn kidneys. In situ hybridization analysis showed that the absence of BMP-7 affects the expression of molecular markers of nephrogenesis, such as Pax-2 and Wnt-4 between 12.5 and 14.5 days postcoitum (dpc). This identifies BMP-7 as an inducer of nephrogenesis. In addition, BMP-7-deficient mice have eye defects that appear to originate during lens induction. Finally, BMP-7-deficient mice also have skeletal patterning defects restricted to the rib cage, the skull, and the hindlimbs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                26 August 2013
                : 8
                : 8
                : e73554
                Affiliations
                [1 ]Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto-city, Kyoto, Japan
                [2 ]Department of Pharmacology, Kansai Medical University, Moriguchi-city, Osaka, Japan
                [3 ]Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
                [4 ]Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto-city, Kyoto, Japan
                [5 ]Kobe City Medical Center General Hospital, Kobe-city, Hyogo, Japan
                [6 ]Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America
                [7 ]Children’s Hospital Boston, Harvard Medical School, Boston, Massachusettes, United States of America
                The University of Manchester, United Kingdom
                Author notes

                Competing Interests: Aris N. Economides is employed by Regeneron Pharmaceuticals, Inc. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

                Conceived and designed the experiments: MY. Performed the experiments: MT MA NA JN AO AYH SE. Analyzed the data: TK TK JK MY. Contributed reagents/materials/analysis tools: ER ANE. Wrote the paper: MT MY.

                Article
                PONE-D-12-32679
                10.1371/journal.pone.0073554
                3753328
                23991197
                72286682-86ff-4325-afe0-2ac08da3fe5f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 October 2012
                : 29 July 2013
                Page count
                Pages: 9
                Funding
                This research was granted by the Japan Society for the Promotion of Science (JSPS) through the "Funding Program for Next Generation World-Leading Researchers (NEXT program)", initiated by the Council for Science and Technology Policy (CSTP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Renal System
                Renal Anatomy
                Renal Physiology
                Developmental Biology
                Organism Development
                Organogenesis
                Cell Differentiation
                Embryology
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Anatomy and Physiology
                Renal System
                Renal Anatomy
                Renal Physiology
                Nephrology
                Developmental Nephrology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article