11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A better understanding of mechanistic insights into genes and enzymes implicated in rare diseases provide a unique opportunity for orphan drug development. Advances made in identification of synthetic lethal relationships between rare disorder genes with oncogenes and tumor suppressor genes have brought in new anticancer therapeutic opportunities. Additionally, the rapid development of small molecule inhibitors against enzymes that participate in DNA damage response and repair has been a successful strategy for targeted cancer therapeutics. Here, we discuss the recent advances in our understanding of how many rare disease genes participate in promoting genome stability. We also summarize the latest developments in exploiting rare diseases to uncover new biological mechanisms and identify new synthetic lethal interactions for anticancer drug discovery that are in various stages of preclinical and clinical studies.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Human CtIP promotes DNA end resection.

          In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcription-coupled DNA repair: two decades of progress and surprises.

            Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-strand break repair and genetic disease.

              Hereditary defects in the repair of DNA damage are implicated in a variety of diseases, many of which are typified by neurological dysfunction and/or increased genetic instability and cancer. Of the different types of DNA damage that arise in cells, single-strand breaks (SSBs) are the most common, arising at a frequency of tens of thousands per cell per day from direct attack by intracellular metabolites and from spontaneous DNA decay. Here, the molecular mechanisms and organization of the DNA-repair pathways that remove SSBs are reviewed and the connection between defects in these pathways and hereditary neurodegenerative disease are discussed.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                01 September 2018
                September 2018
                : 10
                : 9
                : 298
                Affiliations
                Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
                Author notes
                Author information
                https://orcid.org/0000-0003-0522-3361
                https://orcid.org/0000-0002-5693-6129
                Article
                cancers-10-00298
                10.3390/cancers10090298
                6162646
                30200453
                72296875-a22b-42bf-92ce-0742c7daf6d6
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 July 2018
                : 28 August 2018
                Categories
                Review

                rare disease,orphan drugs,synthetic lethality,targeted cancer therapy,combination therapy,dna repair,precision medicine,genomic instability,chemotherapy,clinical trials

                Comments

                Comment on this article