6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age and Menopause Effects on Ocular Compliance and Aqueous Outflow

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Glaucoma is the second leading cause of blindness worldwide. Recent work suggests that estrogen and the timing of menopause play a role in modulating the risk of developing glaucoma. Menopause is known to cause modest changes in intraocular pressure; yet, whether this change is mediated through the outflow pathway remains unknown. Menopause also affects tissue biomechanical properties throughout the body; however, the impact of menopause on ocular biomechanical properties is not well characterized.

          Methods

          Here, we simultaneously assessed the impact of menopause on aqueous outflow facility and ocular compliance, as a measure of corneoscleral shell biomechanics. We used young (3–4 months old) and middle-aged (9–10 months old) Brown Norway rats. Menopause was induced by ovariectomy (OVX), and control animals underwent sham surgery, resulting in the following groups: young sham (n = 5), young OVX (n = 6), middle-aged sham (n = 5), and middle-aged OVX (n = 5). Eight weeks postoperatively, we measured outflow facility and ocular compliance.

          Results

          Menopause resulted in a 34% decrease in outflow facility and a 19% increase in ocular compliance ( P = 0.011) in OVX animals compared with sham controls ( P = 0.019).

          Conclusions

          These observations reveal that menopause affects several key physiological factors known to be associated with glaucoma, suggesting that menopause may contribute to an increased risk of glaucoma in women.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma.

          This article is dedicated to Rosario Hernandez for her warm support of my own work and her genuine enthusiasm for the work of her colleagues throughout her career. I first met Rosario as a research fellow in Harry Quigley's laboratory between 1991 and 1993. Along with Harry, John Morrison, Elaine Johnson, Abe Clark, Colm O'Brien and many others, Rosario's work has provided lamina cribrosa astrocyte cellular mechanisms that are biomechanically plausible and in so doing provided credibility to early notions of the optic nerve head (ONH) as a biomechanical structure. We owe a large intellectual debt to Rosario for her dogged persistence in the characterization of the ONH astrocyte and lamina cribrosacyte in age and disease. Two questions run through her work and remain of central importance today. First, how do astrocytes respond to and alter the biomechanical environment of the ONH and the physiologic stresses created therein? Second, how do these physiologic demands on the astrocyte influence their ability to deliver the support to retinal ganglion cell axon transport and flow against the translaminar pressure gradient? The purpose of this article is to summarize what is known about the biomechanical determinants of retinal ganglion cell axon physiology within the ONH in the optic neuropathy of aging and Glaucoma. My goal is to provide a biomechanical framework for this discussion. This framework assumes that the ONH astrocytes and glia fundamentally support and influence both the lamina cribrosa extracellular matrix and retinal ganglion cell axon physiology. Rosario Hernandez was one of the first investigators to recognize the implications of this unique circumstance. Many of the ideas contained herein have been initially presented within or derived from her work (Hernandez, M.R., 2000. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 19, 297-321.; Hernandez, M.R., Pena, J.D., 1997. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol. 115, 389-395.). Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Scleral biomechanics in the aging monkey eye.

            To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 +/- 5.3 years) and young (1.5 +/- 0.7 years) rhesus monkeys. The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mm Hg while the 3D displacements of the scleral surface were measured with speckle interferometry. Each scleral shell's geometry was digitally reconstructed from data generated by a 3-D digitizer (topography) and 20-MHz ultrasound (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (P = 0.038) and tangent modulus and structural stiffness were significantly higher in old monkeys (P < 0.0001). On average, scleral collagen fibers were circumferentially oriented around the optic nerve head (ONH). No difference was found in the preferred collagen fiber orientation and fiber concentration factor between age groups. Posterior sclera of old monkeys is significantly stiffer than that of young monkeys and is therefore subject to higher stresses but lower strains at all levels of IOP. Age-related stiffening of the sclera may significantly influence ONH biomechanics and potentially contribute to age-related susceptibility to glaucomatous vision loss.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age- and race-related differences in human scleral material properties.

              We tested the hypothesis that there are age- and race-related differences in posterior scleral material properties, using eyes from human donors of European (20-90 years old, n = 40 eyes) and African (23-74 years old, n = 22 eyes) descent. Inflation tests on posterior scleral shells were performed while full-field, three-dimensional displacements were recorded using laser speckle interferometry. Scleral material properties were fit to each eye using a microstructure-based constitutive formulation that incorporates the collagen fibril crimp and the local anisotropic collagen architecture. The effects of age and race were estimated using Generalized Estimating Equations, while accounting for intradonor correlations. The shear modulus significantly increased (P = 0.038) and collagen fibril crimp angle significantly decreased with age (P = 0.002). Donors of African descent exhibited a significantly higher shear modulus (P = 0.019) and showed evidence of a smaller collagen fibril crimp angle (P = 0.057) compared to donors of European descent. The in-plane strains in the peripapillary sclera were significantly lower with age (P < 0.015) and African ancestry (P < 0.015). The age- and race-related differences in scleral material properties result in a loss of scleral compliance due to a higher shear stiffness and a lower level of stretch at which the collagen fibrils uncrimp. The loss of compliance should lead to larger high frequency IOP fluctuations and changes in the optic nerve head (ONH) biomechanical response in the elderly and in persons of African ancestry, and may contribute to the higher susceptibility to glaucoma in these at-risk populations. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                14 May 2020
                May 2020
                : 61
                : 5
                : 16
                Affiliations
                [ 1 ]Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
                [ 2 ]Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
                [ 3 ]Department of Bioengineering, Imperial College London, London, United Kingdom
                Author notes
                [* ]Correspondence: C. Ross Ethier, Georgia Institute of Technology, 315 Ferst Drive, 2306 IBB, Atlanta, GA 30332-0363, USA; ross.ethier@ 123456bme.gatech.edu.
                Article
                IOVS-20-29418
                10.1167/iovs.61.5.16
                7405619
                32407519
                72369c75-5d4e-46cd-810d-8a64a3271424
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 17 March 2020
                : 23 January 2020
                Page count
                Pages: 7
                Categories
                Glaucoma
                Glaucoma

                ocular compliance,outflow facility,menopause,glaucoma,mechanics

                Comments

                Comment on this article