16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Light trapping in mesoporous solar cells with plasmonic nanostructures

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review article provides a comprehensive review of recent progress in plasmon-enhanced mesoporous solar cells and the mechanisms employed.

          Abstract

          Plasmon resonances in metal nanostructures have been extensively harnessed for light trapping in mesoporous solar cells (MSCs), including dye-sensitized solar cells (DSSCs) and recently in perovskite solar cells (PSCs). By altering the geometry, dimension, and composition of metal nanostructures, their optical characteristics can be tuned to either overlap with the sensitizer absorption and enhance light harvesting, or absorb light at a wavelength complementary to the sensitizer enabling broadband solar light capture in MSCs. In this comprehensive review, we discuss the mechanisms of plasmonic enhancement in MSCs including far-field coupling of scattered light, near-field coupling of localized electromagnetic fields, hot electron transfer, and plasmon resonant energy transfer. We then summarize the progress in plasmon enhanced DSSCs in the past decade and decouple the impact of metal nanostructure shape, size, composition, and surface coatings on the overall efficiency. Further, we also discuss the recent advances in plasmon-enhanced perovskite solar cells. Distinct from other published reviews, we discuss the significance of femtosecond spectroscopies to probe the fundamental underpinnings of plasmon enhanced phenomena and understand the mechanisms that give rise to energy transfer between metal nanoparticles and solar materials. The review concludes with a discussion on the challenges in plasmonic device fabrication, and the promise of low-loss semiconductor nanocrystals for plasmonic enhancement in MSCs that facilitate light capture in the infrared.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.

            The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co((II/III))tris(bipyridyl)-based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular design of YD2-o-C8 greatly retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the oxidized cobalt mediator, which enables attainment of strikingly high photovoltages approaching 1 volt. Because the YD2-o-C8 porphyrin harvests sunlight across the visible spectrum, large photocurrents are generated. Cosensitization of YD2-o-C8 with another organic dye further enhances the performance of the device, leading to a measured power conversion efficiency of 12.3% under simulated air mass 1.5 global sunlight.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemistry and properties of nanocrystals of different shapes.

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2016
                2016
                : 9
                : 5
                : 1577-1601
                Article
                10.1039/C5EE03847B
                724a346a-0659-46d4-9ae1-a39b2ee076d0
                © 2016
                History

                Comments

                Comment on this article