12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fusarium solani Infection Depressed Photosystem Performance by Inducing Foliage Wilting in Apple Seedlings

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fusarium fungi are soil-borne pathogens, and the pathological effects on plant photosystems remain unclear. This study aimed to deeply reveal pathological characterization in apple seedlings infected with Fusarium solani by investigating photosystems performance and interaction. Roots were immersed in conidial suspension for inoculation. Thereafter, prompt and delayed chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected. After 30 days of infection, leaf relative water content and dry weight were remarkably decreased by 55.7 and 47.1%, suggesting that the infected seedlings were subjected to Fusarium-induced water deficit stress. PSI reaction center was more susceptible than PSII reaction center in infected seedlings due to greater decrease in the maximal photochemical efficiency of PSI than that of PSII, but PSI reaction center injury was aggravated slowly, as PSII injury could partly protect PSI by restricting electron donation. PSII donor and acceptor sides were also damaged after 20 days of infection, and the restricted electron donation induced PSII and PSI disconnection by blocking PSI re-reduction. In accordance with greater damage of PSI reaction center, PSI oxidation was also suppressed. Notably, significantly increased efficiency of electron transport from plastoquinone (PQ) to PSI acceptors (REo/ETo) after 20 days of infection suggested greater inhibition on PQ reduction than re-oxidation, and the protection for PSI acceptors might alleviate the reduction of electron transport efficiency beyond PQ upon damaged PSI reaction center. Lowered delayed fluorescence in microsecond domain verified PSII damage in infected seedlings, and elevated delayed fluorescence in sub-millisecond domain during PQ reduction process conformed to increased REo/ETo. In conclusion, F. solani infection depressed PSII and PSI performance and destroyed their coordination by inducing pathological wilting in apple seedlings. It may be a pathogenic mechanism of Fusarium to induce plant photosystems damage.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Roles of glycine betaine and proline in improving plant abiotic stress resistance

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photoinhibition of photosystem I.

            The photoinhibition of Photosystem I (PSI) drew less attention compared with that of Photosystem II (PSII). This could be ascribed to several reasons, e.g. limited combinations of plant species and environmental conditions that cause PSI photoinhibition, the non-regulatory aspect of PSI photoinhibition, and methodological difficulty to determine the accurate activity of PSI under stress conditions. However, the photoinhibition of PSI could be more dangerous than that of PSII because of the very slow recovery rate of PSI. This article is intended to introduce such characteristics of PSI photoinhibition with special emphasis on the relationship between two photosystems as well as the protective mechanism of PSI in vivo. Although the photoinhibition of PSI could be induced only in specific conditions and specific plant species in intact leaves, PSI itself is quite susceptible to photoinhibition in isolated thylakoid membranes. PSI seems to be well protected from photoinhibition in vivo in many plant species and many environmental conditions. This is quite understandable because photoinhibition of PSI is not only irreversible but also the potential cause of many secondary damages. This point would be different from the case of PSII photoinhibition, which could be regarded as one of the regulatory mechanisms under stressed as well as non-stressed conditions. Copyright © Physiologia Plantarum 2010.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP.

              The effects of dibromothymoquinone (DBMIB) and methylviologen (MV) on the Chl a fluorescence induction transient (OJIP) were studied in vivo. Simultaneously measured 820-nm transmission kinetics were used to monitor electron flow through photosystem I (PSI). DBMIB inhibits the reoxidation of plastoquinol by binding to the cytochrome b(6)/f complex. MV accepts electrons from the FeS clusters of PSI and it allows electrons to bypass the block that is transiently imposed by ferredoxin-NADP(+)-reductase (FNR) (inactive in dark-adapted leaves). We show that the IP phase of the OJIP transient disappears in the presence of DBMIB without affecting F(m). MV suppresses the IP phase by lowering the P level compared to untreated leaves. These observations indicate that PSI activity plays an important role in the kinetics of the OJIP transient. Two requirements for the IP phase are electron transfer beyond the cytochrome b(6)/f complex (blocked by DBMIB) and a transient block at the acceptor side of PSI (bypassed by MV). It is also observed that in leaves, just like in thylakoid membranes, DBMIB can bypass its own block at the cytochrome b(6)/f complex and donate electrons directly to PC(+) and P700(+) with a donation time tau of 4.3 s. Further, alternative explanations of the IP phase that have been proposed in the literature are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                07 May 2018
                2018
                : 9
                : 479
                Affiliations
                [1] 1Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, China
                [2] 2Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, China
                [3] 3State Key Laboratory of Crop Biology, Shandong Agricultural University , Tai’an, China
                [4] 4Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences , Jinan, China
                [5] 5School of Life Sciences, Ludong University , Yantai, China
                Author notes

                Edited by: Vasilij Goltsev, Sofia University, Bulgaria

                Reviewed by: Lorenzo Ferroni, University of Ferrara, Italy; Pengmin Li, Northwest A&F University, China

                *Correspondence: Kun Yan, kyan@ 123456yic.ac.cn Shijie Zhao, sjzhao@ 123456sdau.edu.cn

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.00479
                5949536
                725354d5-d54c-4409-a7c1-0250320c6851
                Copyright © 2018 Yan, Han, Ren, Zhao, Wu and Bian.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 February 2018
                : 28 March 2018
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 45, Pages: 10, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                photosynthetic electron transport,photosystems interaction,plastoquinone,soil-borne pathogen,water deficit

                Comments

                Comment on this article