4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Color removal from textile dyebath effluents in a zeolite fixed bed reactor: determination of optimum process conditions using Taguchi method.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Taguchi method was applied as an experimental design to determine optimum conditions for color removal from textile dyebath house effluents in a zeolite fixed bed reactor. After the parameters were determined to treat real textile wastewater, adsorption experiments were carried out. The breakthrough curves for adsorption studies were constructed under different conditions by plotting the normalized effluent color intensity (C/C(0)) versus time (min) or bed volumes (BV). The chosen experimental parameters and their ranges are: HTAB concentration (C(htab)), 1-7.5 gL(-1); HTAB feeding flowrate (Q(htab)), 0.015-0.075 L min(-1); textile wastewater flowrate (Q(dye)), 0.025-0.050 L min(-1) and zeolite bed height (H(bed)), 25-50 cm, respectively. Mixed orthogonal array L(16) (4(2)x2(2)) for experimental plan and the larger the better response category were selected to determine the optimum conditions. The optimum conditions were found to be as follows: HTAB concentration (C(htab))=1g L(-1), HTAB feeding flowrate (Q(htab))=0.015 L min(-1), textile wastewater flowrate (Q(dye))=0.025 L min(-1) and bed height (H(bed))=50 cm. Under these conditions, the treated wastewater volume reached a maximum while the bed volumes (BV) were about 217. While HTAB concentration, gL(-1) (A); zeolite bed height, cm (D) and wastewater flowrate, L min(-1) (C) were found to be significant parameters, respectively, whereas, HTAB flowrate, L min(-1) (B) was found to be an insignificant parameter.

          Related collections

          Author and article information

          Journal
          J. Hazard. Mater.
          Journal of hazardous materials
          Elsevier BV
          0304-3894
          0304-3894
          Nov 30 2008
          : 159
          : 2-3
          Affiliations
          [1 ] Sakarya University, Industrial Engineering Department, 54040 Sakarya, Turkey.
          Article
          S0304-3894(08)00256-2
          10.1016/j.jhazmat.2008.02.065
          18387737
          7256f6a7-6412-4102-a2ac-b0b09adc400d
          History

          Comments

          Comment on this article