22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro-engineered non-antibody protein therapeutics

      review-article
      ,
      Protein & Cell
      Higher Education Press
      scaffold, multivalent, phage, yeast, ribosome, antibody surrogate

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibodies have proved to be a valuable mode of therapy for numerous diseases, mainly owing to their high target binding affinity and specificity. Unfortunately, antibodies are also limited in several respects, chief amongst those being the extremely high cost of manufacture. Therefore, non-antibody binding proteins have long been sought after as alternative therapies. New binding protein scaffolds are constantly being designed or discovered with some already approved for human use by the FDA. This review focuses on protein scaffolds that are either already being used in humans or are currently being evaluated in clinical trials. Although not all are expected to be approved, the significant benefits ensure that these molecules will continue to be investigated and developed as therapeutic alternatives to antibodies. Based on the location of the amino acids that mediate ligand binding, we place all the protein scaffolds under clinical development into two general categories: scaffolds with ligand-binding residues located in exposed flexible loops, and those with the binding residues located in protein secondary structures, such as α-helices. Scaffolds that fall under the first category include adnectins, anticalins, avimers, Fynomers, Kunitz domains, and knottins, while those belonging to the second category include affibodies, β-hairpin mimetics, and designed ankyrin repeat proteins (DARPins). Most of these scaffolds are thermostable and can be easily produced in microorganisms or completely synthesized chemically. In addition, many of these scaffolds derive from human proteins and thus possess very low immunogenic potential. Additional advantages and limitations of these protein scaffolds as therapeutics compared to antibodies will be discussed.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Paul Ehrlich's magic bullet concept: 100 years of progress.

          Exceptional advances in molecular biology and genetic research have expedited cancer drug development tremendously. The declared paradigm is the development of 'personalized and tailored drugs' that precisely target the specific molecular defects of a cancer patient. It is therefore appropriate to revisit the intellectual foundations of the development of such agents, as many have shown great clinical success. One hundred years ago, Paul Ehrlich, the founder of chemotherapy, received the Nobel Prize for Physiology or Medicine. His postulate of creating 'magic bullets' for use in the fight against human diseases inspired generations of scientists to devise powerful molecular cancer therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration.

            Angiogenesis is a key aspect of the wet form of age-related neovascular (AMD), the leading cause of blindness in the elderly population. Substantial evidence indicated that vascular endothelial growth factor (VEGF)-A is a major mediator of angiogenesis and vascular leakage in wet AMD. VEGF-A is the prototype member of a gene family that includes also PlGF, VEGF-B, VEGF-C, VEGF-D and the orf virus-encoded VEGF-E. Several isoforms of VEGF-A can be generated due to alternative mRNA splicing. Various VEGF inhibitors have been clinically developed. Among these, ranibizumab is a high affinity recombinant Fab that neutralizes all isoforms of VEGF-A. The article briefly reviews the biology of VEGF and then focuses on the path that led to clinical development of ranibizumab. The safety and efficacy of ranibizumab in the treatment of neovascular AMD have been evaluated in two large phase III, multicenter, randomized, double-masked, controlled pivotal trials in different neovascular AMD patient populations. Combined, the trial results indicate that ranibizumab results not only in a slowing down of vision loss but also in a significant proportion of patients experiencing a clinically meaningful vision gain. The visual acuity benefit over control was observed regardless of CNV lesion type. Furthermore, the benefit was associated with a low rate of serious adverse events. Ranibizumab represents a novel therapy that, for the first time, appears to have the potential to enable many AMD patients to obtain a meaningful and sustained gain of vision. On June 30 2006, ranibizumab was approved by the US Food and Drug Administration for the treatment of wet AMD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies for extended serum half-life of protein therapeutics.

              With a growing number of protein therapeutics being developed, many of them exhibiting a short plasma half-life, half-life extension strategies find increasing attention by the biotech and pharmaceutical industry. Extension of the half-life can help to reduce the number of applications and to lower doses, thus are beneficial for therapeutic but also economic reasons. Here, a comprehensive overview of currently developed half-life extension strategies is provided including those aiming at increasing the hydrodynamic volume of a protein drug but also those implementing recycling processes mediated by the neonatal Fc receptor. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                zchen4@tamu.edu
                Journal
                Protein Cell
                Protein Cell
                Protein & Cell
                Higher Education Press (Beijing )
                1674-800X
                1674-8018
                7 March 2017
                7 March 2017
                January 2018
                : 9
                : 1
                : 3-14
                Affiliations
                GRID grid.412408.b, Department of Microbial Pathogenesis and Immunology, , Texas A&M University Health Science Center, ; College Station, TX 77845 USA
                Article
                386
                10.1007/s13238-017-0386-6
                5777970
                28271446
                725bc002-285c-4e9c-87a3-4e8f64dc3413
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 5 January 2017
                : 13 February 2017
                Categories
                Review
                Custom metadata
                © HEP and Springer-Verlag GmbH Germany, part of Springer Nature 2018

                scaffold,multivalent,phage,yeast,ribosome,antibody surrogate
                scaffold, multivalent, phage, yeast, ribosome, antibody surrogate

                Comments

                Comment on this article