Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system

      , , , , , ,

      Neuroscience

      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small (SK) and intermediate (IK) conductance calcium-activated potassium channels are candidate ion channels for the regulation of excitability in nociceptive neurones. We have used unique peptide-directed antisera to describe the immunocytochemical distribution of the known isoforms of these ion channels in dorsal root ganglia (DRG) and spinal cord of the rat. These investigations sought to characterize further the phenotype and hence possible functions of nociceptive neurone subpopulations in the rat. In addition, using Western blotting, we sought to determine the level of protein expression of SK and IK channels in sensory nervous tissues following induction of inflammation (Freund's Complete Adjuvant (FCA) arthritis model) or nerve injury (chronic constriction injury model). We show that SK1, SK2, SK3 and IK1 are all expressed in DRG and spinal cord. Morphometric analysis revealed that SK1, SK2 and IK1 were preferentially localized to neurones having cell bodies <1000 microm2 (putative nociceptors) in DRG. Dual labeling immunocytochemistry showed that these ion channels co-localize with both CGRP and IB4, known markers of nociceptor sub-populations. SK2 was localized almost exclusively in the superficial laminae of the spinal cord dorsal horn, the region in which many sensory afferents terminate; the distribution of SK1 and IK1 was more widespread in spinal cord, although some preferential labeling within the dorsal horn was observed in the case of IK1. Here we show evidence for a distinctive pattern of expression for certain members of the calcium-activated potassium channel family in the rat DRG.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          Elsevier BV
          03064522
          January 2005
          January 2005
          : 131
          : 1
          : 161-175
          Article
          10.1016/j.neuroscience.2004.09.062
          15680700
          © 2005

          Comments

          Comment on this article