7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carbon Fate and Flux in Prochlorococcus under Nitrogen Limitation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photosynthetic microbes are the predominant sources of organic carbon in the sunlit regions of the ocean. During photosynthesis, nitrogen and carbon metabolism are coordinated to synthesize nitrogen-containing organics such as amino acids and nucleic acids. In large regions of the ocean, nitrogen is thought to limit the growth of phytoplankton. The impact of nitrogen limitation on the synthesis of organic carbon is not well understood, especially for the most abundant photosynthetic organism in the nitrogen-limited regions of the ocean, Prochlorococcus. This study compares the carbon metabolism of nitrogen-replete and nitrogen-limited Prochlorococcus spp. to determine how nitrogen availability influences inorganic carbon assimilation into an organic form. Metabolomics and physiological data revealed that cells under nitrogen limitation have reduced metabolic flux and total carbon fixation rates while maintaining elevated metabolite pool levels and releasing a larger proportion of total fixed carbon to the environment.

          ABSTRACT

          Primary production by Prochlorococcus, the smallest known free-living photosynthetic organism in terms of both physical and genomic size, is thought to have a significant role in global carbon cycles. Despite its small size and low growth rate, Prochlorococcus numerically dominates the phytoplankton community in the nutrient-poor oligotrophic ocean, the largest biome of the Earth’s surface. How nutrient limitation, and nitrogen limitation in particular, affects the fate and flux of carbon fixed by Prochlorococcus is currently unknown. To address this gap in knowledge, we compared the bulk rates of photosynthesis and organic carbon release, the concentrations of intracellular metabolites, and the rates of assimilated carbon into the metabolite pools between replete and N-limited chemostat cultures. Total photosynthesis of our N-limited cultures was less than half of those observed in replete cultures, and nitrogen limitation also appears to cause a larger proportion of total fixed carbon to be released to the environment. Our data suggest this occurs in concert with the maintenance of large slow-moving pools of metabolites, including nitrogen-rich molecules such as glutamate. Additionally, we report field data suggesting metabolisms of Prochlorococcus are comparable to results we observe in our laboratory studies. Accounting for these observations, potential metabolic mechanisms utilized by Prochlorococcus are discussed as we build upon our understanding of nutrient-limited photosynthesis and carbon metabolism.

          IMPORTANCE Photosynthetic microbes are the predominant sources of organic carbon in the sunlit regions of the ocean. During photosynthesis, nitrogen and carbon metabolism are coordinated to synthesize nitrogen-containing organics such as amino acids and nucleic acids. In large regions of the ocean, nitrogen is thought to limit the growth of phytoplankton. The impact of nitrogen limitation on the synthesis of organic carbon is not well understood, especially for the most abundant photosynthetic organism in the nitrogen-limited regions of the ocean, Prochlorococcus. This study compares the carbon metabolism of nitrogen-replete and nitrogen-limited Prochlorococcus spp. to determine how nitrogen availability influences inorganic carbon assimilation into an organic form. Metabolomics and physiological data revealed that cells under nitrogen limitation have reduced metabolic flux and total carbon fixation rates while maintaining elevated metabolite pool levels and releasing a larger proportion of total fixed carbon to the environment.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Processes and patterns of oceanic nutrient limitation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.

            The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 10(27) and 7.0 ± 0.3 × 10(26) cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolomic analysis and visualization engine for LC-MS data.

              Metabolomic analysis by liquid chromatography-high-resolution mass spectrometry results in data sets with thousands of features arising from metabolites, fragments, isotopes, and adducts. Here we describe a software package, Metabolomic Analysis and Visualization ENgine (MAVEN), designed for efficient interactive analysis of LC-MS data, including in the presence of isotope labeling. The software contains tools for all aspects of the data analysis process, from feature extraction to pathway-based graphical data display. To facilitate data validation, a machine learning algorithm automatically assesses peak quality. Users interact with raw data primarily in the form of extracted ion chromatograms, which are displayed with overlaid circles indicating peak quality, and bar graphs of peak intensities for both unlabeled and isotope-labeled metabolite forms. Click-based navigation leads to additional information, such as raw data for specific isotopic forms or for metabolites changing significantly between conditions. Fast data processing algorithms result in nearly delay-free browsing. Drop-down menus provide tools for the overlay of data onto pathway maps. These tools enable animating series of pathway graphs, e.g., to show propagation of labeled forms through a metabolic network. MAVEN is released under an open source license at http://maven.princeton.edu.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSystems
                mSystems
                msys
                msys
                mSystems
                mSystems
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5077
                26 February 2019
                Jan-Feb 2019
                : 4
                : 1
                : e00254-18
                Affiliations
                [a ]Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
                [b ]Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
                [c ]Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
                [d ]Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Tennessee, USA
                City of Knowledge
                Author notes
                Address correspondence to Erik R. Zinser, ezinser@ 123456utk.edu .

                Citation Szul MJ, Dearth SP, Campagna SR, Zinser ER. 2019. Carbon fate and flux in Prochlorococcus under nitrogen limitation. mSystems 4:e00254-18. https://doi.org/10.1128/mSystems.00254-18.

                Article
                mSystems00254-18
                10.1128/mSystems.00254-18
                6392094
                30834330
                7272339d-7d14-48bf-9357-49d8bd39e135
                Copyright © 2019 Szul et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 10 October 2018
                : 28 January 2019
                Page count
                supplementary-material: 6, Figures: 5, Tables: 0, Equations: 2, References: 59, Pages: 16, Words: 11100
                Funding
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award ID: OCE-1233964
                Award Recipient :
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award ID: OCE-1233964
                Award Recipient :
                Categories
                Research Article
                Molecular Biology and Physiology
                Custom metadata
                January/February 2019

                prochlorococcus,carbon,cyanobacteria,metabolomics,nitrogen
                prochlorococcus, carbon, cyanobacteria, metabolomics, nitrogen

                Comments

                Comment on this article