16
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated serum neuregulin 4 levels in patients with hyperthyroidism

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Recent studies have shown that neuregulin 4 (Nrg4), a member of the epidermal growth factor (EGF) family of extracellular ligands, plays an important role in the prevention of obesity, insulin resistance and nonalcoholic fatty liver disease (NAFLD). Considering that thyroid hormone (TH) has profound effects on whole-body energy metabolism, we speculate that circulating Nrg4 levels might be altered in patients with hyperthyroidism.

          Design and methods

          A total of 129 hyperthyroid patients and 100 healthy subjects were recruited. Of them, 39 hyperthyroid patients received thionamide treatment for 3 months until euthyroidism. Serum Nrg4 levels were determined using the ELISA method. To further confirm the relationship between TH and Nrg4, C57BL/6 mice were treated with T 3 and quantitative real-time PCR was performed to detect Nrg4 gene expression.

          Results

          Serum Nrg4 levels were significantly elevated in hyperthyroid patients as compared with normal controls (3.84 ± 1.63 vs 2.21 ± 1.04 ng/mL, P < 0.001). After achieving euthyroidism by thionamide treatment, serum Nrg4 levels dropped markedly from 3.57 ± 1.26 to 1.94 ± 0.72 ng/ml ( P < 0.001). After adjustment for potential confounders, serum Nrg4 levels were independently associated with hyperthyroidism. The upregulation of Nrg4 expression in the livers and white adipose tissues by T 3 was further confirmed by animal and cell culture experiments.

          Conclusions

          Serum Nrg4 levels were increased in patients with hyperthyroidism. The liver and white adipose tissue might be primary sources contributing to elevated serum Nrg4 concentrations.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Thyroid hormone regulation of metabolism.

          Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
            • Record: found
            • Abstract: found
            • Article: not found

            Global epidemiology of hyperthyroidism and hypothyroidism

            Thyroid hormones are essential for growth, neuronal development, reproduction and regulation of energy metabolism. Hypothyroidism and hyperthyroidism are common conditions with potentially devastating health consequences that affect all populations worldwide. Iodine nutrition is a key determinant of thyroid disease risk; however, other factors, such as ageing, smoking status, genetic susceptibility, ethnicity, endocrine disruptors and the advent of novel therapeutics, including immune checkpoint inhibitors, also influence thyroid disease epidemiology. In the developed world, the prevalence of undiagnosed thyroid disease is likely falling owing to widespread thyroid function testing and relatively low thresholds for treatment initiation. However, continued vigilance against iodine deficiency remains essential in developed countries, particularly in Europe. In this report, we review the global incidence and prevalence of hyperthyroidism and hypothyroidism, highlighting geographical differences and the effect of environmental factors, such as iodine supplementation, on these data. We also highlight the pressing need for detailed epidemiological surveys of thyroid dysfunction and iodine status in developing countries.
              • Record: found
              • Abstract: found
              • Article: not found

              The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuating hepatic lipogenesis

              Brown fat activates uncoupled respiration to defend against cold and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that Neuregulin 4 (Nrg4), a member of the EGF family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat, and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3/ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR/SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat-enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and non-alcoholic fatty liver disease.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                June 2019
                07 May 2019
                : 8
                : 6
                : 728-735
                Affiliations
                [1 ]Department of Endocrinology and Metabolism , Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
                [2 ]Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
                [3 ]CAS Key Laboratory of Nutrition , Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
                [4 ]Department of Endocrinology and Metabolism , Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China
                Author notes
                Correspondence should be addressed to Y Song or J Yang or L Zhao: yupingsong@ 123456hotmail.com or jialinyang2002@ 123456163.com or zhao_lin2005@ 123456hotmail.com

                *(M Li and Y Chen contributed equally to this work)

                Article
                EC-19-0175
                10.1530/EC-19-0175
                6547303
                31063974
                7273728c-90e6-4046-b835-03077c1e85e6
                © 2019 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 22 April 2019
                : 07 May 2019
                Categories
                Research

                thyroid,metabolism
                thyroid, metabolism

                Comments

                Comment on this article

                Related Documents Log