52
views
0
recommends
+1 Recommend
0 collections
    28
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-blinking single-photon emitters in silica

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks, most likely due to coupling to a silica vibration with an energy of 160-180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Single photons on demand from a single molecule at room temperature.

          The generation of non-classical states of light is of fundamental scientific and technological interest. For example, 'squeezed' states enable measurements to be performed at lower noise levels than possible using classical light. Deterministic (or triggered) single-photon sources exhibit non-classical behaviour in that they emit, with a high degree of certainty, just one photon at a user-specified time. (In contrast, a classical source such as an attenuated pulsed laser emits photons according to Poisson statistics.) A deterministic source of single photons could find applications in quantum information processing, quantum cryptography and certain quantum computation problems. Here we realize a controllable source of single photons using optical pumping of a single molecule in a solid. Triggered single photons are produced at a high rate, whereas the probability of simultaneous emission of two photons is nearly zero--a useful property for secure quantum cryptography. Our approach is characterized by simplicity, room temperature operation and improved performance compared to other triggered sources of single photons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-blinking semiconductor nanocrystals.

            The photoluminescence from a variety of individual molecules and nanometre-sized crystallites is defined by large intensity fluctuations, known as 'blinking', whereby their photoluminescence turns 'on' and 'off' intermittently, even under continuous photoexcitation. For semiconductor nanocrystals, it was originally proposed that these 'off' periods corresponded to a nanocrystal with an extra charge. A charged nanocrystal could have its photoluminescence temporarily quenched owing to the high efficiency of non-radiative (for example, Auger) recombination processes between the extra charge and a subsequently excited electron-hole pair; photoluminescence would resume only after the nanocrystal becomes neutralized again. Despite over a decade of research, completely non-blinking nanocrystals have not been synthesized and an understanding of the blinking phenomenon remains elusive. Here we report ternary core/shell CdZnSe/ZnSe semiconductor nanocrystals that individually exhibit continuous, non-blinking photoluminescence. Unexpectedly, these nanocrystals strongly photoluminesce despite being charged, as indicated by a multi-peaked photoluminescence spectral shape and short lifetime. To model the unusual photoluminescence properties of the CdZnSe/ZnSe nanocrystals, we softened the abrupt confinement potential of a typical core/shell nanocrystal, suggesting that the structure is a radially graded alloy of CdZnSe into ZnSe. As photoluminescence blinking severely limits the usefulness of nanocrystals in applications requiring a continuous output of single photons, these non-blinking nanocrystals may enable substantial advances in fields ranging from single-molecule biological labelling to low-threshold lasers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface-enhanced emission from single semiconductor nanocrystals.

              The fluorescence behavior of single CdSe(ZnS) core-shell nanocrystal (NC) quantum dots is dramatically affected by electromagnetic interactions with a rough metal film. Observed changes include a fivefold increase in the observed fluorescence intensity of single NCs, a striking reduction in their fluorescence blinking behavior, complete conversion of the emission polarization to linear, and single NC exciton lifetimes that are >10(3) times faster. The enhanced excited state decay process for NCs coupled to rough metal substrates effectively competes with the Auger relaxation process, allowing us to observe both charged and neutral exciton emission from these NC quantum dots.
                Bookmark

                Author and article information

                Journal
                10.1038/srep21187
                1509.07262

                Condensed matter,Optical materials & Optics
                Condensed matter, Optical materials & Optics

                Comments

                Comment on this article