29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical composition of nuts and seeds sold in Korea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly ( P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical composition of selected edible nut seeds.

              Commercially important edible nut seeds were analyzed for chemical composition and moisture sorption. Moisture (1.47-9.51%), protein (7.50-21.56%), lipid (42.88-66.71%), ash (1.16-3.28%), total soluble sugars (0.55-3.96%), tannins (0.01-0.88%), and phytate (0.15-0.35%) contents varied considerably. Regardless of the seed type, lipids were mainly composed of mono- and polyunsaturated fatty acids (>75% of the total lipids). Fatty acid composition analysis indicated that oleic acid (C18:1) was the main constituent of monounsaturated lipids in all seed samples. With the exception of macadamia, linoleic acid (C18:2) was the major polyunsaturated fatty acid. In the case of walnuts, in addition to linoleic acid (59.79%) linolenic acid (C18:3) also significantly contributed toward the total polyunsaturated lipids. Amino acid composition analyses indicated lysine (Brazil nut, cashew nut, hazelnut, pine nut, and walnut), sulfur amino acids methionine and cysteine (almond), tryptophan (macadamia, pecan), and threonine (peanut) to be the first limiting amino acid as compared to human (2-5 year old) amino acid requirements. The amino acid composition of the seeds was characterized by the dominance of hydrophobic (range = 37.16-44.54%) and acidic (27.95-33.17%) amino acids followed by basic (16.16-21.17%) and hydrophilic (8.48-11.74%) amino acids. Trypsin inhibitory activity, hemagglutinating activity, and proteolytic activity were not detected in the nut seed samples analyzed. Sorption isotherms (Aw range = 0.08-0.97) indicated a narrow range for monolayer water content (11-29 mg/g of dry matter). No visible mold growth was evident on any of the samples stored at Aw < 0.53 and 25 degrees C for 6 months.
                Bookmark

                Author and article information

                Journal
                Nutr Res Pract
                Nutr Res Pract
                NRP
                Nutrition Research and Practice
                The Korean Nutrition Society and the Korean Society of Community Nutrition
                1976-1457
                2005-6168
                April 2013
                01 April 2013
                : 7
                : 2
                : 82-88
                Affiliations
                Department of Food and Nutrition, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul 139-742, Korea.
                Author notes
                Corresponding Author: Keun Hee Chung, Tel. 82-2-3399-1651, Fax. 82-2-3399-1655, khchung@ 123456syu.ac.kr

                *The two authors contributed equally to this work.

                Article
                10.4162/nrp.2013.7.2.82
                3627934
                23610599
                727f8fe9-1c9b-470e-a1bb-eee331d65a35
                ©2013 The Korean Nutrition Society and the Korean Society of Community Nutrition

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 July 2012
                : 03 December 2012
                : 17 December 2012
                Categories
                Original Research

                Nutrition & Dietetics
                iron,nut,polyunsaturated fatty acid,seed,zinc
                Nutrition & Dietetics
                iron, nut, polyunsaturated fatty acid, seed, zinc

                Comments

                Comment on this article