30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuropathic pain and cytokines: current perspectives

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention.

          Related collections

          Most cited references 96

          • Record: found
          • Abstract: found
          • Article: not found

          A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes.

          Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-10: new perspectives on an old cytokine.

            Interleukin-10 (IL-10) has long been recognized to have potent and broad-spectrum anti-inflammatory activity, which has been unequivocally established in various models of infection, inflammation, and even in cancer. However, because of the marginal successes of the initial clinical trials using recombinant IL-10, some of the interest in this cytokine as an anti-inflammatory therapeutic has diminished. New work showing IL-10 production from regulatory T cells and even T-helper 1 T cells has reinvigorated the field and revealed the power of this cytokine to influence immune responses. Furthermore, new preclinical studies suggest that combination therapies, using antibodies to IL-10 along with chemotherapy, can be effective in treating bacterial, viral, or neoplastic diseases. Studies to understand IL-10 gene expression in the various cell types may lead to new therapeutics to enhance or inhibit IL-10 production. In this review, we summarize what is known about the regulation of IL-10 gene expression by various immune cells. We speculate on the promise that this cytokine holds to influence immune responses and mitigate immune pathologies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Historical insights into cytokines.

              Cytokines affect nearly every biological process; these include embryonic development, disease pathogenesis, non-specific response to infection, specific response to antigen, changes in cognitive functions and progression of the degenerative processes of aging. In addition, cytokines are part of stem cell differentiation, vaccine efficacy and allograft rejection. This short insight focuses on the milestones in cytokine biology and how the various and often contradictory activities of these small, non-structural proteins affected the fields of inflammation and immunology. Multiple biological properties or pleiotropism is the hallmark of a cytokine. Today, the term "cytokine" encompasses interferons, the interleukins, the chemokine family, mesenchymal growth factors, the tumor necrosis factor family and adipokines. As of this writing, 33 cytokines are called interleukins, but many are part of families of related but distinct gene products. There are certainly over 100 separate genes coding for cytokine-like activities, many with overlapping functions and many still unexplored. Also discussed in this overview are the failures and successes of cytokines as therapeutic targets. A recent advance in the field has been that of differential cytokine production, which can be used to classify human disease as being "autoimmune" or "autoinflammatory" thus impacting on therapeutic interventions.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2013
                21 November 2013
                : 6
                : 803-814
                Affiliations
                Wolfson Centre for Age Related Diseases, King’s College London, London, UK
                Author notes
                Correspondence: Marzia Malcangio; Anna K Clark, Wolfson Centre for Age Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SEI IUL, UK, Tel +44 207 848 6092, Fax +44 207 848 6165, Email marzia.malcangio@ 123456kcl.ac.uk ; anna.clark@ 123456kcl.ac.uk
                Article
                jpr-6-803
                10.2147/JPR.S53660
                3839806
                © 2013 Clark et al. This work is published by Dove Medical Press Ltd, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Ltd, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article