34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and cutaneous squamous cell carcinoma (cSCC) are high-risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Computer-assisted diagnosis (CAD) systems use artificial intelligence to analyse lesion data and arrive at a diagnosis of skin cancer. When used in unreferred settings ('primary care'), CAD may assist general practitioners (GPs) or other clinicians to more appropriately triage high-risk lesions to secondary care. Used alongside clinical and dermoscopic suspicion of malignancy, CAD may reduce unnecessary excisions without missing melanoma cases.

          Related collections

          Most cited references284

          • Record: found
          • Abstract: found
          • Article: not found

          Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual

          Answer questions and earn CME/CNE To update the melanoma staging system of the American Joint Committee on Cancer (AJCC) a large database was assembled comprising >46,000 patients from 10 centers worldwide with stages I, II, and III melanoma diagnosed since 1998. Based on analyses of this new database, the existing seventh edition AJCC stage IV database, and contemporary clinical trial data, the AJCC Melanoma Expert Panel introduced several important changes to the Tumor, Nodes, Metastasis (TNM) classification and stage grouping criteria. Key changes in the eighth edition AJCC Cancer Staging Manual include: 1) tumor thickness measurements to be recorded to the nearest 0.1 mm, not 0.01 mm; 2) definitions of T1a and T1b are revised (T1a, <0.8 mm without ulceration; T1b, 0.8-1.0 mm with or without ulceration or <0.8 mm with ulceration), with mitotic rate no longer a T category criterion; 3) pathological (but not clinical) stage IA is revised to include T1b N0 M0 (formerly pathologic stage IB); 4) the N category descriptors "microscopic" and "macroscopic" for regional node metastasis are redefined as "clinically occult" and "clinically apparent"; 5) prognostic stage III groupings are based on N category criteria and T category criteria (ie, primary tumor thickness and ulceration) and increased from 3 to 4 subgroups (stages IIIA-IIID); 6) definitions of N subcategories are revised, with the presence of microsatellites, satellites, or in-transit metastases now categorized as N1c, N2c, or N3c based on the number of tumor-involved regional lymph nodes, if any; 7) descriptors are added to each M1 subcategory designation for lactate dehydrogenase (LDH) level (LDH elevation no longer upstages to M1c); and 8) a new M1d designation is added for central nervous system metastases. This evidence-based revision of the AJCC melanoma staging system will guide patient treatment, provide better prognostic estimates, and refine stratification of patients entering clinical trials. CA Cancer J Clin 2017;67:472-492. © 2017 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A systematic review of worldwide incidence of nonmelanoma skin cancer.

              Nonmelanoma skin cancer (NMSC) is the most common cancer affecting white-skinned individuals and the incidence is increasing worldwide. This systematic review brings together 75 studies conducted over the past half century to look at geographical variations and trends worldwide in NMSC, and specifically incidence data are compared with recent U.K. cancer registry data. Following the development of a comprehensive search strategy, an assessment tool was adapted to look at the methodological quality of the eligible studies. Most of the studies focused on white populations in Europe, the U.S.A. and Australia; however, limited data were available for other skin types in regions such as Africa. Worldwide the incidence for NMSC varies widely with the highest rates in Australia [>1000/100, 000 person-years for basal cell carcinoma (BCC)] and the lowest rates in parts of Africa (< 1/100, 000 person-years for BCC). The average incidence rates in England were 76·21/100, 000 person-years and 22·65/100, 000 person-years for BCC and squamous cell carcinoma (SCC), respectively, with highest rates in the South-West of England (121·29/100, 000 person-years for BCC and 33·02/100, 000 person-years for SCC) and lowest rates by far in London (0·24/100, 000 person-years for BCC and 14·98/100, 000 person-years for SCC). The incidence rates in the U.K. appear to be increasing at a greater rate when compared with the rest of Europe. NMSC is an increasing problem for health care services worldwide. This review highlights a requirement for prevention studies in this area and the issues surrounding incomplete NMSC registration. Registration standards of NMSC should be improved to the level of other invasive disease. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interval estimation for the difference between independent proportions: comparison of eleven methods

              Several existing unconditional methods for setting confidence intervals for the difference between binomial proportions are evaluated. Computationally simpler methods are prone to a variety of aberrations and poor coverage properties. The closely interrelated methods of Mee and Miettinen and Nurminen perform well but require a computer program. Two new approaches which also avoid aberrations are developed and evaluated. A tail area profile likelihood based method produces the best coverage properties, but is difficult to calculate for large denominators. A method combining Wilson score intervals for the two proportions to be compared also performs well, and is readily implemented irrespective of sample size.
                Bookmark

                Author and article information

                Journal
                Cochrane Database of Systematic Reviews
                Wiley
                14651858
                December 04 2018
                Affiliations
                [1 ]University of Birmingham; Institute of Applied Health Research; Edgbaston Campus Birmingham UK B15 2TT
                [2 ]University Hospitals Birmingham NHS Foundation Trust and University of Birmingham; NIHR Birmingham Biomedical Research Centre; Birmingham UK
                [3 ]Churchill Hospital; Department of Dermatology; Old Road Headington Oxford UK OX3 7LE
                [4 ]The University of Nottingham; c/o Cochrane Skin Group; Nottingham UK
                [5 ]Barts Health NHS Trust; Department of Dermatology; Whitechapel London UK E11BB
                [6 ]City Hospital; Birmingham Skin Centre; Dudley Rd Birmingham UK B18 7QH
                [7 ]Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust; Dermatology; Hills Road Cambridge UK CB2 0QQ
                [8 ]Cardiff and Vale University Health Board; CEDAR Healthcare Technology Research Centre; Cardiff Medicentre, University Hospital of Wales, Heath Park Campus Cardiff Wales UK CF144UJ
                [9 ]University of Oxford; Kennedy Institute of Rheumatology; Oxford UK
                [10 ]Institute of Cancer Research and The Royal Marsden NHS Foundation Trust; Joint Department of Physics; 15 Cotswold Road Sutton UK SM2 5NG
                [11 ]University of Nottingham; Centre of Evidence Based Dermatology; Queen's Medical Centre Derby Road Nottingham UK NG7 2UH
                Article
                10.1002/14651858.CD013186
                6517147
                30521691
                7285d745-3030-4ae8-8d26-a8dd66c2387e
                © 2018
                History

                Comments

                Comment on this article