20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Cellular and Molecular Responses of the Basilar Terminus to Hemodynamics during Intracranial Aneurysm Initiation in a Rabbit Model

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Hemodynamics constitute a critical factor in the formation of intracranial aneurysms. However, little is known about how intracranial arteries respond to hemodynamic insult and how that response contributes to aneurysm formation. We examined early cellular responses at rabbit basilar termini exposed to hemodynamic insult that initiates aneurysmal remodeling. Methods: Flow in the basilar artery was increased by bilateral carotid artery ligation. After 2 and 5 days, basilar terminus tissue was examined by immunohistochemistry and quantitative PCR. Results: Within 2 days of flow increase, internal elastic lamina (IEL) was lost in the periapical region of the bifurcation, which experienced high wall shear stress and positive wall shear stress gradient. Overlying endothelium was still largely present in this region. IEL loss was associated with localized apoptosis and elevated expression of matrix metalloproteinases (MMPs) 2 and 9. A small number of inflammatory cells were sporadically scattered in the bifurcation adventitia and were not concentrated in regions of IEL loss and MMP elevation. Elevated MMP expression colocalized with smooth muscle α-actin in the media. Conclusion: The initial vascular response to aneurysm-initiating hemodynamic insult includes localized matrix degradation and cell apoptosis. Such destructive remodeling arises from intrinsic mural cells, rather than through inflammatory cell infiltration.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques.

          Dysregulated extracellular matrix (ECM) metabolism may contribute to vascular remodeling during the development and complication of human atherosclerotic lesions. We investigated the expression of matrix metalloproteinases (MMPs), a family of enzymes that degrade ECM components in human atherosclerotic plaques (n = 30) and in uninvolved arterial specimens (n = 11). We studied members of all three MMP classes (interstitial collagenase, MMP-1; gelatinases, MMP-2 and MMP-9; and stromelysin, MMP-3) and their endogenous inhibitors (TIMPs 1 and 2) by immunocytochemistry, zymography, and immunoprecipitation. Normal arteries stained uniformly for 72-kD gelatinase and TIMPs. In contrast, plaques' shoulders and regions of foam cell accumulation displayed locally increased expression of 92-kD gelatinase, stromelysin, and interstitial collagenase. However, the mere presence of MMP does not establish their catalytic capacity, as the zymogens lack activity, and TIMPs may block activated MMPs. All plaque extracts contained activated forms of gelatinases determined zymographically and by degradation of 3H-collagen type IV. To test directly whether atheromata actually contain active matrix-degrading enzymes in situ, we devised a method which allows the detection and microscopic localization of MMP enzymatic activity directly in tissue sections. In situ zymography revealed gelatinolytic and caseinolytic activity in frozen sections of atherosclerotic but not of uninvolved arterial tissues. The MMP inhibitors, EDTA and 1,10-phenanthroline, as well as recombinant TIMP-1, reduced these activities which colocalized with regions of increased immunoreactive MMP expression, i.e., the shoulders, core, and microvasculature of the plaques. Focal overexpression of activated MMP may promote destabilization and complication of atherosclerotic plaques and provide novel targets for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases.

            The cellular mechanisms of degeneration and repair preceding rupture of the saccular cerebral artery aneurysm wall need to be elucidated for rational design of growth factor or drug-releasing endovascular devices. Patient records, preoperative vascular imaging studies, and the snap-frozen fundi resected after microsurgical clipping from 66 aneurysms were studied. Immunostainings for markers of smooth muscle cell (SMC) phenotype, proliferation, and inflammatory cell subtypes and TUNEL reaction were performed. Unruptured (24) and ruptured (42) aneurysms had similar dimensions (median diameter in unruptured 6 mm; median in ruptured 7 mm; P=0.308). We identified 4 basic types of aneurysm wall that associated with rupture: (1) endothelialized wall with linearly organized SMCs (17/66; 42% ruptured), (2) thickened wall with disorganized SMCs (20/66; 55% ruptured), (3) hypocellular wall with either myointimal hyperplasia or organizing luminal thrombosis (14/66; 64% ruptured), and (4) an extremely thin thrombosis-lined hypocellular wall (15/66; 100% ruptured). Apoptosis, de-endothelialization, luminal thrombosis, SMC proliferation, and T-cell and macrophage infiltration associated with rupture. Furthermore, macrophage infiltration associated with SMC proliferation, and both were increased in ruptured aneurysms resected <12 hours from rupture, suggesting that these were not just reactive changes. Before rupture, the wall of saccular cerebral artery aneurysm undergoes morphological changes associated with remodeling of the aneurysm wall. Some of these changes, like SMC proliferation and macrophage infiltration, likely reflect ongoing repair attempts that could be enhanced with pharmacological therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation.

              Arterial bifurcation apices are common sites for cerebral aneurysms, raising the possibility that the unique hemodynamic conditions associated with flow dividers predispose the apical vessel wall to aneurysm formation. This study sought to identify the specific hemodynamic insults that lead to maladaptive vascular remodeling associated with aneurysm development and to identify early remodeling events at the tissue and cellular levels. We surgically created new branch points in the carotid vasculature of 6 female adult dogs. In vivo angiographic imaging and computational fluid dynamics simulations revealed the detailed hemodynamic microenvironment for each bifurcation, which were then spatially correlated with histologic features showing specific tissue responses. We observed 2 distinct patterns of vessel wall remodeling: (1) hyperplasia that formed an intimal pad at the bifurcation apex and (2) destructive remodeling in the adjacent region of flow acceleration that resembled the initiation of an intracranial aneurysm, characterized by disruption of the internal elastic lamina, loss of medial smooth muscle cells, reduced proliferation of smooth muscle cells, and loss of fibronectin. Strong localization of aneurysm-type remodeling to the region of accelerating flow suggests that a combination of high wall shear stress and a high gradient in wall shear stress represents a "dangerous" hemodynamic condition that predisposes the apical vessel wall to aneurysm formation.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2011
                August 2011
                31 May 2011
                : 48
                : 5
                : 429-442
                Affiliations
                aToshiba Stroke Research Center, Departments of bPathology and Anatomical Sciences, cNeurosurgery, dMechanical and Aerospace Engineering, and eRadiology, State University of New York at Buffalo, and fDepartment of Neurosurgery, Millard Fillmore Gates Hospital, Kaleida Health, Buffalo, N.Y., and gDepartment of Neurosurgery, University of Florida, Gainesville, Fla., USA
                Author notes
                *Dr. John Kolega, Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, 206A Farber Hall, 3435 Main Street, Buffalo, NY 14214 (USA), Tel. +1 716 829 3527, E-Mail kolega@buffalo.edu
                Article
                324840 PMC3121554 J Vasc Res 2011;48:429–442
                10.1159/000324840
                PMC3121554
                21625176
                7296d1d4-809a-4b5c-b98e-174abc142919
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 25 October 2010
                : 27 January 2011
                Page count
                Figures: 7, Tables: 2, Pages: 14
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Internal elastic lamina,Intracranial aneurysm,Apoptosis,Vascular remodeling,Wall shear stress,Matrix metalloproteinase,Inflammatory cells,Hemodynamic forces

                Comments

                Comment on this article