29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Longitudinally Profiling Neutralizing Antibody Response to SARS Coronavirus with Pseudotypes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV spike protein pseudotypes are the basis of an in vitro microneutralization assay sensitive and specific for SARS-CoV neutralizing antibodies.

          Abstract

          The severe acute respiratory syndrome–associated coronavirus (SARS-CoV) spike protein (S) is a major target for neutralizing antibodies. Retroviral SARS-CoV S pseudotypes have been constructed and used to develop an in vitro microneutralization assay that is both sensitive and specific for SARS-CoV neutralizing antibodies. Neutralization titers measured by this assay are highly correlated to those measured by an assay using replication-competent SARS-CoV. No cross-neutralization occurred with human sera known to contain antibodies to coronavirus strains OC43 and 229E. The pseudotype assay was used to profile neutralizing antibody responses against SARS-CoV S in sequential serum samples taken from 41 confirmed SARS patients during the 2003 outbreak in Hong Kong and shows long-lasting immunity in most recovered patients. The pseudotype assay does not require handling live SARS virus; it is a useful tool to determine neutralizing titers during natural infection and the preclinical evaluation of candidate vaccines.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.

          A retroviral vector system based on the human immunodeficiency virus (HIV) was developed that, in contrast to a murine leukemia virus-based counterpart, transduced heterologous sequences into HeLa cells and rat fibroblasts blocked in the cell cycle, as well as into human primary macrophages. Additionally, the HIV vector could mediate stable in vivo gene transfer into terminally differentiated neurons. The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity.

            We investigated the contributions of the structural proteins of severe acute respiratory syndrome (SARS) coronavirus (CoV) to protective immunity by expressing them individually and in combinations from a recombinant parainfluenza virus (PIV) type 3 vector called BHPIV3. This vector provided direct immunization of the respiratory tract, the major site of SARS transmission, replication, and disease. The BHPIV3/SARS recombinants were evaluated for immunogenicity and protective efficacy in hamsters, which support a high level of pulmonary SARS-CoV replication. A single intranasal administration of BHPIV3 expressing the SARS-CoV spike protein (S) induced a high titer of SARS-CoV-neutralizing serum antibodies, only 2-fold less than that induced by SARS-CoV infection. The expression of S with the two other putative virion envelope proteins, the matrix M and small envelope E proteins, did not augment the neutralizing antibody response. In absence of S, expression of M and E or the nucleocapsid protein N did not induce a detectable serum SARS-CoV-neutralizing antibody response. Immunization with BHPIV3 expressing S provided complete protection against SARS-CoV challenge in the lower respiratory tract and partial protection in the upper respiratory tract. This was augmented slightly by coexpression with M and E. Expression of M, E, or N in the absence of S did not confer detectable protection. These results identify S among the structural proteins as the only significant SARS-CoV neutralization antigen and protective antigen and show that a single mucosal immunization is highly protective in an experimental animal that supports efficient replication of SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor

              The angiotensin converting enzyme 2 (ACE2) has been identified as a receptor for the severe acute respiratory syndrome associated coronavirus (SARS-CoV). Here we show that ACE2 expression on cell lines correlates with susceptibility to SARS-CoV S-driven infection, suggesting that ACE2 is a major receptor for SARS-CoV. The soluble ectodomain of ACE2 specifically abrogated S-mediated infection and might therefore be exploited for the generation of inhibitors. Deletion of a major portion of the cytoplasmic domain of ACE2 had no effect on S-driven infection, indicating that this domain is not important for receptor function. Our results point to a central role of ACE2 in SARS-CoV infection and suggest a minor contribution of the cytoplasmic domain to receptor function.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                March 2005
                : 11
                : 3
                : 411-416
                Affiliations
                [* ]University College London, London, United Kingdom
                []Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, People’s Republic of China
                []University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
                [§ ]Health Protection Agency Central Public Health Laboratory, London, United Kingdom
                Author notes
                Address for correspondence: Nigel Temperton, Wohl Virion Centre and Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom; fax: +44-2076799555; email: nigel.temperton@ 123456ucl.ac.uk
                Article
                04-0906
                10.3201/eid1103.040906
                3298259
                15757556
                7297a556-123f-4b4f-bbfd-a7ab3d3ec52e
                History
                Categories
                Research
                Research

                Infectious disease & Microbiology
                infectious diseases,research,neutralization tests,sars virus,emerging,vaccines

                Comments

                Comment on this article