41
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Opening Pandora’s Box: Aerosol boxes and barrier enclosures for airway management in COVID-19 patients – a scoping review and narrative synthesis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Exposure of healthcare providers to SARS-CoV-2 is a significant safety concern during COVID-19 pandemic, requiring contact/droplet/airborne precautions. Due to global shortages, limited availability of personal protective equipment has motivated the development of barrier-enclosure systems such as aerosol boxes, plastic drapes, and similar protective systems .

          We examined the available evidence and scientific publications about barrier-enclosure systems for airway management in suspected/confirmed COVID-19 patients. Medline/EMBASE/Google Scholar databases (December 1/2019 - May 27/2020) were searched for all articles on barrier enclosures for airway management in COVID-19, including references and websites. All sources were reviewed by a panel of experts using a Delphi method with a modified nominal-group technique.

          Results

          Fifty-two articles were reviewed for their results and level of evidence regarding barrier device feasibility, advantages, protection against droplets and aerosols, effectiveness, safety, ergonomics, and cleaning/disposal.

          The majority of analysed papers were expert opinion, small case-series, technical descriptions, small-sample simulation studies, and pre-print proofs.

          Conclusions

          The use of barrier-enclosure devices adds to the complexity of airway procedures with potential adverse consequences, especially during airway emergencies. Concerns include limitations on the ability to perform airway interventions and the aid that can be delivered by an assistant, patient injuries, compromise of PPE integrity, lack of evidence for added protection of healthcare providers including secondary aerosolization upon barrier removal, and lack of cleaning standards.

          Enclosure barriers for airway management are no substitute for adequate PPE, and their use should be avoided until adequate validation studies can be reported.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study

          Summary Background An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. Methods In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. Findings Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3–11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. Interpretation The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1–2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. Funding None.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidance for conducting systematic scoping reviews.

              Reviews of primary research are becoming more common as evidence-based practice gains recognition as the benchmark for care, and the number of, and access to, primary research sources has grown. One of the newer review types is the 'scoping review'. In general, scoping reviews are commonly used for 'reconnaissance' - to clarify working definitions and conceptual boundaries of a topic or field. Scoping reviews are therefore particularly useful when a body of literature has not yet been comprehensively reviewed, or exhibits a complex or heterogeneous nature not amenable to a more precise systematic review of the evidence. While scoping reviews may be conducted to determine the value and probable scope of a full systematic review, they may also be undertaken as exercises in and of themselves to summarize and disseminate research findings, to identify research gaps, and to make recommendations for the future research. This article briefly introduces the reader to scoping reviews, how they are different to systematic reviews, and why they might be conducted. The methodology and guidance for the conduct of systematic scoping reviews outlined below was developed by members of the Joanna Briggs Institute and members of five Joanna Briggs Collaborating Centres.
                Bookmark

                Author and article information

                Contributors
                Role: Consultant
                Role: Professor of Anaesthesiology
                Role: Associate Professor and Lead: Fellowship in Airway and Thoracic Anaesthesia
                Role: Professor of Anaesthesiology, Professor
                Role: Clinical Professor Anaesthesiology
                Journal
                Br J Anaesth
                Br J Anaesth
                BJA: British Journal of Anaesthesia
                British Journal of Anaesthesia. Published by Elsevier Ltd.
                0007-0912
                1471-6771
                3 September 2020
                3 September 2020
                Affiliations
                [1 ]Anaesthesia and Intensive Care, Policlinico San Marco University Hospital, Catania, Italy
                [2 ]Department of Anesthesiology, Yale School of Medicine
                [3 ]Department of Anaesthesia and Perioperative Medicine, University of Cape Town, South Africa
                [4 ]Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
                [5 ]Department of Anaesthesiology, University of Florida/NFSGVHS, USA
                [6 ]Medical Education, School of Medicine, Sigmund Freud University Vienna, Vienna, Austria
                Author notes
                []Corresponding author. Massimiliano Sorbello Department of Emergency Medicine, Anaesthesia and Intensive Care, Policlinico Vittorio Emanuele San Marco University Hospital, Viale C.A. Ciampi, 95100, Catania, Italy +393496277107 , .
                Article
                S0007-0912(20)30699-1
                10.1016/j.bja.2020.08.038
                7470712
                32977955
                72a037db-2eed-42b0-955b-7aa6ea6d0f32
                © 2020 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 12 June 2020
                : 31 July 2020
                : 18 August 2020
                Categories
                Article

                Anesthesiology & Pain management
                aerosol box,aerosol generating procedures,covid-19,droplets,intubation

                Comments

                Comment on this article