22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clostridial Neurotoxins: Mechanism of SNARE Cleavage and Outlook on Potential Substrate Specificity Reengineering

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clostridial neurotoxin family consists of tetanus neurotoxin and seven distinct botulinum neurotoxins which cause the diseases tetanus and botulism. The extreme potency of these toxins primarily relies not only on their ability to specifically enter motoneurons but also on the activity their catalytic domains display inside presynaptic motoneuronal terminals. Subsequent to neurotoxin binding and endocytosis the catalytic domains become translocated across endosomal membranes and proteolyze unique peptide bonds of one of three soluble N-ethylmaleimide-sensitive fusion protein attachment receptors (SNAREs), vesicle associated membrane protein/synaptobrevin, synaptosome associated protein of 25 kDa, or syntaxin. As these substrate proteins are core components of the vesicular membrane fusion apparatus, cleavage of any of the substrate molecules results in the blockade of neurotransmitter release. This review summarizes the present knowledge about the molecular basis of the specific substrate recognition and cleavage mechanism and assesses the feasibility of reengineering catalytic domains to hydrolyze non-substrate members of the three SNARE families in order to expand the therapeutic application of botulinum neurotoxins.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          SNAREs--engines for membrane fusion.

          Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurotoxins affecting neuroexocytosis.

            Nerve terminals are specific sites of action of a very large number of toxins produced by many different organisms. The mechanism of action of three groups of presynaptic neurotoxins that interfere directly with the process of neurotransmitter release is reviewed, whereas presynaptic neurotoxins acting on ion channels are not dealt with here. These neurotoxins can be grouped in three large families: 1) the clostridial neurotoxins that act inside nerves and block neurotransmitter release via their metalloproteolytic activity directed specifically on SNARE proteins; 2) the snake presynaptic neurotoxins with phospholipase A(2) activity, whose site of action is still undefined and which induce the release of acethylcholine followed by impairment of synaptic functions; and 3) the excitatory latrotoxin-like neurotoxins that induce a massive release of neurotransmitter at peripheral and central synapses. Their modes of binding, sites of action, and biochemical activities are discussed in relation to the symptoms of the diseases they cause. The use of these toxins in cell biology and neuroscience is considered as well as the therapeutic utilization of the botulinum neurotoxins in human diseases characterized by hyperfunction of cholinergic terminals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Botulinum toxin as a biological weapon: medical and public health management.

              The Working Group on Civilian Biodefense has developed consensus-based recommendations for measures to be taken by medical and public health professionals if botulinum toxin is used as a biological weapon against a civilian population. The working group included 23 representatives from academic, government, and private institutions with expertise in public health, emergency management, and clinical medicine. The primary authors (S.S.A. and R.S.) searched OLDMEDLINE and MEDLINE (1960-March 1999) and their professional collections for literature concerning use of botulinum toxin as a bioweapon. The literature was reviewed, and opinions were sought from the working group and other experts on diagnosis and management of botulism. Additional MEDLINE searches were conducted through April 2000 during the review and revisions of the consensus statement. The first draft of the working group's consensus statement was a synthesis of information obtained in the formal evidence-gathering process. The working group convened to review the first draft in May 1999. Working group members reviewed subsequent drafts and suggested additional revisions. The final statement incorporates all relevant evidence obtained in the literature search in conjunction with final consensus recommendations supported by all working group members. An aerosolized or foodborne botulinum toxin weapon would cause acute symmetric, descending flaccid paralysis with prominent bulbar palsies such as diplopia, dysarthria, dysphonia, and dysphagia that would typically present 12 to 72 hours after exposure. Effective response to a deliberate release of botulinum toxin will depend on timely clinical diagnosis, case reporting, and epidemiological investigation. Persons potentially exposed to botulinum toxin should be closely observed, and those with signs of botulism require prompt treatment with antitoxin and supportive care that may include assisted ventilation for weeks or months. Treatment with antitoxin should not be delayed for microbiological testing.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                toxins
                Toxins
                Molecular Diversity Preservation International
                2072-6651
                April 2010
                13 April 2010
                : 2
                : 4
                : 665-682
                Affiliations
                Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, 30623 Hannover, Germany; Email: sikorra.stefan@ 123456mh-hannover.de (S.S.); mahrhold.stefan@ 123456mh-hannover.de (S.M.)
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: binz.thomas@ 123456mh-hannover.de ; Tel.: +49-511-532-2859; Fax: +49-511-532-2849.
                Article
                toxins-02-00665
                10.3390/toxins2040665
                3153214
                22069605
                72a25e99-808d-4216-aeb5-63740b23055e
                © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 07 February 2010
                : 30 March 2010
                : 09 April 2010
                Categories
                Review

                Molecular medicine
                botulinum neurotoxin,tetanus toxin,snare,zinc protease,enzyme engineering
                Molecular medicine
                botulinum neurotoxin, tetanus toxin, snare, zinc protease, enzyme engineering

                Comments

                Comment on this article