26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) Provides Support for a Gondwanan Origin of Dixenous Parasitism in the Leishmaniinae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Leishmania includes approximately 53 species, 20 of which cause human leishmaniais; a significant albeit neglected tropical disease. Leishmaniasis has afflicted humans for millennia, but how ancient is Leishmania and where did it arise? These questions have been hotly debated for decades and several theories have been proposed. One theory suggests Leishmania originated in the Palearctic, and dispersed to the New World via the Bering land bridge. Others propose that Leishmania evolved in the Neotropics. The Multiple Origins theory suggests that separation of certain Old World and New World species occurred due to the opening of the Atlantic Ocean. Some suggest that the ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia evolved on Gondwana between 90 and 140 million years ago. In the present study a detailed molecular and morphological characterisation was performed on a novel Australian trypanosomatid following its isolation in Australia’s tropics from the native black fly, Simulium ( Morops) dycei Colbo, 1976. Phylogenetic analyses were conducted and confirmed this parasite as a sibling to Zelonia costaricensis, a close relative of Leishmania previously isolated from a reduviid bug in Costa Rica. Consequently, this parasite was assigned the name Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. australiensis diverged when Australia and South America became completely separated, their divergence occurred between 36 and 41 million years ago at least. Using this vicariance event as a calibration point for a phylogenetic time tree, the common ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia appeared in Gondwana approximately 91 million years ago. Ultimately, this study contributes to our understanding of trypanosomatid diversity, and of Leishmania origins by providing support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae.

          Author Summary

          The genus Leishmania includes approximately 53 species, 20 of which cause human leishmaniais, a significant disease that has afflicted humans for millennia. But how ancient is Leishmania and where did it arise? Some suggest Leishmania originated in the Palearctic. Others suggest it appeared in the Neotropics. The Multiple Origins theory proposes that separation of certain Old World and Neotropical species occurred following the opening of the Atlantic. Others suggest that an ancestor to the Euleishmania and Paraleishmania appeared on Gondwana 90 to 140 million years ago (MYA). We performed a detailed molecular and morphological characterisation of a novel Australian trypanosomatid. This parasite is a sibling to the Neotropical Zelonia costaricensis, a close relative of Leishmania, and designated as Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. australiensis split when Australia and South America separated, their divergence occurred between 36 and 41 MYA. Using this event as a calibration point for a phylogenetic time tree, an ancestor of the dixenous Leishmaniinae appeared in Gondwana ~ 91 MYA. This study contributes to our understanding of trypanosomatid diversity by describing a unique Australian trypanosomatid and to our understanding of Leishmania evolution by inferring a Gondwanan origin for dixenous parasitism in the Leishmaniinae.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.

            K Tamura, M Nei (1993)
            Examining the pattern of nucleotide substitution for the control region of mitochondrial DNA (mtDNA) in humans and chimpanzees, we developed a new mathematical method for estimating the number of transitional and transversional substitutions per site, as well as the total number of nucleotide substitutions. In this method, excess transitions, unequal nucleotide frequencies, and variation of substitution rate among different sites are all taken into account. Application of this method to human and chimpanzee data suggested that the transition/transversion ratio for the entire control region was approximately 15 and nearly the same for the two species. The 95% confidence interval of the age of the common ancestral mtDNA was estimated to be 80,000-480,000 years in humans and 0.57-2.72 Myr in common chimpanzees.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Confidence Limits on Phylogenies: An Approach Using the Bootstrap

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                12 January 2017
                January 2017
                : 11
                : 1
                : e0005215
                Affiliations
                [1 ]School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
                [2 ]Insect Research Facility, University of Technology Sydney, Sydney, New South Wales, Australia
                [3 ]Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
                [4 ]Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
                [5 ]Department of Medical Entomology, University of Sydney & Pathology West - ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
                [6 ]St. Vincent's Hospital Sydney, Division of Microbiology, Sydney, New South Wales, Australia
                [7 ]Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
                [8 ]Microbiology Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia
                Charité University Medicine Berlin, GERMANY
                Author notes

                The authors have declared that no competing interests exist.

                • Conceptualization: JB JE.

                • Data curation: JB JE.

                • Formal analysis: JB JE.

                • Funding acquisition: JB JE.

                • Investigation: JB JE AK BP TR GM AL.

                • Methodology: JB JE AK DC RL BP DS.

                • Project administration: JB JE.

                • Resources: JB JE BP RL DS GM.

                • Supervision: JB JE.

                • Validation: JB JE AK.

                • Visualization: JB GM AK.

                • Writing – original draft: JB AK.

                • Writing – review & editing: JB AK DC JE.

                Article
                PNTD-D-16-01689
                10.1371/journal.pntd.0005215
                5230760
                28081121
                72c708e6-869a-4a2b-9745-24ad070406a8
                © 2017 Barratt et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 September 2016
                : 29 November 2016
                Page count
                Figures: 8, Tables: 2, Pages: 26
                Funding
                The authors acknowledge the University of Technology Sydney for funding this project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Protozoans
                Parasitic Protozoans
                Leishmania
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Biology and Life Sciences
                Developmental Biology
                Life Cycles
                Protozoan Life Cycles
                Promastigotes
                Biology and Life Sciences
                Microbiology
                Protozoology
                Protozoan Life Cycles
                Promastigotes
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Parasitology
                Parasite Evolution
                Biology and Life Sciences
                Paleontology
                Paleogenetics
                Earth Sciences
                Paleontology
                Paleogenetics
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Custom metadata
                All sequence data have been submitted to GenBank and can been accessed under accession numbers KY273490 to KY273519 for trypanosomatid sequences, and accession numbers KY288010 to KY288017 for black fly sequences.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article