66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The extraction of neural strategies from the surface EMG

      , ,
      Journal of Applied Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This brief review examines some of the methods used to infer central control strategies from surface electromyogram (EMG) recordings. Among the many uses of the surface EMG in studying the neural control of movement, the review critically evaluates only some of the applications. The focus is on the relations between global features of the surface EMG and the underlying physiological processes. Because direct measurements of motor unit activation are not available and many factors can influence the signal, these relations are frequently misinterpreted. These errors are compounded by the counterintuitive effects that some system parameters can have on the EMG signal. The phenomenon of crosstalk is used as an example of these problems. The review describes the limitations of techniques used to infer the level of muscle activation, the type of motor unit recruited, the upper limit of motor unit recruitment, the average discharge rate, and the degree of synchronization between motor units. Although the global surface EMG is a useful measure of muscle activation and assessment, there are limits to the information that can be extracted from this signal.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Models of recruitment and rate coding organization in motor-unit pools.

          1. Isometric muscle force and the surface electromyogram (EMG) were simulated from a model that predicted recruitment and firing times in a pool of 120 motor units under different levels of excitatory drive. The EMG-force relationships that emerged from simulations using various schedules of recruitment and rate coding were compared with those observed experimentally to determine which of the modeled schemes were plausible representations of the actual organization in motor-unit pools. 2. The model was comprised of three elements: a motoneuron model, a motor-unit force model, and a model of the surface EMG. Input to the neuron model was an excitatory drive function representing the net synaptic input to motoneurons during voluntary muscle contractions. Recruitment thresholds were assigned such that many motoneurons had low thresholds and relatively few neurons had high thresholds. Motoneuron firing rate increased as a linear function of excitatory drive between recruitment threshold and peak firing rate levels. The sequence of discharge times for each motoneuron was simulated as a random renewal process. 3. Motor-unit twitch force was estimated as an impulse response of a critically damped, second-order system. Twitch amplitudes were assigned according to rank in the recruitment order, and twitch contraction times were inversely related to twitch amplitude. Nonlinear force-firing rate behavior was simulated by varying motor-unit force gain as a function of the instantaneous firing rate and the contraction time of the unit. The total force exerted by the muscle was computed as the sum of the motor-unit forces. 4. Motor-unit action potentials were simulated on the basis of estimates of the number and location of motor-unit muscle fibers and the propagation velocity of the fiber action potentials. The number of fibers innervated by each unit was assumed to be directly proportional to the twitch force. The area of muscle encompassing unit fibers was proportional to the number of fibers innervated, and the location of motor-unit territories were randomly assigned within the muscle cross section. Action-potential propagation velocities were estimated from an inverse function of contraction time. The train of discharge times predicted from the motoneuron model determined the occurrence of each motor-unit action potential. The surface EMG was synthesized as the sum of all motor-unit action-potential trains. 5. Two recruitment conditions were tested: narrow (limit of recruitment 70% maximum excitation).(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of anatomical, physical, and detection-system parameters on surface EMG.

            Many previous studies were focused on the influence of anatomical, physical, and detection-system parameters on recorded surface EMG signals. Most of them were conducted by simulations. Previous EMG models have been limited by simplifications which did not allow simulation of several aspects of the EMG generation and detection systems. We recently proposed a model for fast and accurate simulation of the surface EMG. It characterizes the volume conductor as a non-homogeneous and anisotropic medium, and allows simulation of EMG signals generated by finite-length fibers without approximation of the current-density source. The influence of thickness of the subcutaneous tissue layers, fiber inclination, fiber depth, electrode size and shape, spatial filter transfer function, interelectrode distance, length of the fibers on surface, single-fiber action-potential amplitude, frequency content, and estimated conduction velocity are investigated in this paper. Implications of the results on electrode positioning procedures, spatial filter design, and EMG signal interpretation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions.

              The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Physiology
                Journal of Applied Physiology
                American Physiological Society
                8750-7587
                1522-1601
                April 2004
                April 2004
                : 96
                : 4
                : 1486-1495
                Article
                10.1152/japplphysiol.01070.2003
                15016793
                72dc920b-4400-45e1-9562-df20177bc947
                © 2004
                History

                Comments

                Comment on this article