35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      H++: a server for estimating p K as and adding missing hydrogens to macromolecules

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The structure and function of macromolecules depend critically on the ionization (protonation) states of their acidic and basic groups. A number of existing practical methods predict protonation equilibrium p K constants of macromolecules based upon their atomic resolution Protein Data Bank (PDB) structures; the calculations are often performed within the framework of the continuum electrostatics model. Unfortunately, these methodologies are complex, involve multiple steps and require considerable investment of effort. Our web server http://biophysics.cs.vt.edu/H++ provides access to a tool that automates this process, allowing both experts and novices to quickly obtain estimates of p Ks as well as other related characteristics of biomolecules such as isoelectric points, titration curves and energies of protonation microstates. Protons are added to the input structure according to the calculated ionization states of its titratable groups at the user-specified pH; the output is in the PQR (PDB + charges + radii) format. In addition, corresponding coordinate and topology files are generated in the format supported by the molecular modeling package AMBER. The server is intended for a broad community of biochemists, molecular modelers, structural biologists and drug designers; it can also be used as an educational tool in biochemistry courses.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Classical electrostatics in biology and chemistry.

          A major revival in the use of classical electrostatics as an approach to the study of charged and polar molecules in aqueous solution has been made possible through the development of fast numerical and computational methods to solve the Poisson-Boltzmann equation for solute molecules that have complex shapes and charge distributions. Graphical visualization of the calculated electrostatic potentials generated by proteins and nucleic acids has revealed insights into the role of electrostatic interactions in a wide range of biological phenomena. Classical electrostatics has also proved to be successful quantitative tool yielding accurate descriptions of electrical potentials, diffusion limited processes, pH-dependent properties of proteins, ionic strength-dependent phenomena, and the solvation free energies of organic molecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrostatic aspects of protein-protein interactions.

            Structural and mutational analyses reveal a central role for electrostatic interactions in protein-protein association. Experiment and theory both demonstrate that clusters of charged and polar residues that are located on protein-protein interfaces may enhance complex stability, although the total effect of electrostatics is generally net destabilizing. The past year also witnessed significant progress in our understanding of the effect of electrostatics on protein association kinetics, specifically in the characterization of a partially desolvated encounter complex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Constant pH molecular dynamics in generalized Born implicit solvent.

              A new method is proposed for constant pH molecular dynamics (MD), employing generalized Born (GB) electrostatics. Protonation states are modeled with different charge sets, and titrating residues sample a Boltzmann distribution of protonation states as the simulation progresses, using Monte Carlo sampling based on GB-derived energies. The method is applied to four different crystal structures of hen egg-white lysozyme (HEWL). pK(a) predictions derived from the simulations have root-mean-square (RMS) error of 0.82 relative to experimental values. Similarity of results between the four crystal structures shows the method to be independent of starting crystal structure; this is in contrast to most electrostatics-only models. A strong correlation between conformation and protonation state is noted and quantitatively analyzed, emphasizing the importance of sampling protonation states in conjunction with dynamics. (c) 2004 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2005
                01 July 2005
                27 June 2005
                : 33
                : Web Server issue
                : W368-W371
                Affiliations
                Department of Computer Science, Virginia Tech Blacksburg, VA 24061, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 540 231 4237; Fax: +1 540 231 6075; Email: alexey@ 123456cs.vt.edu
                Article
                10.1093/nar/gki464
                1160225
                15980491
                72f505f1-e1e4-424e-9aff-ddcc2c72a57c
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 14 February 2005
                : 13 April 2005
                : 13 April 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article